Algebraic structure → Group theory Group theory |
---|
In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.
One of the origins of the mathematical theory of arithmetic groups is algebraic number theory. The classical reduction theory of quadratic and Hermitian forms by Charles Hermite, Hermann Minkowski and others can be seen as computing fundamental domains for the action of certain arithmetic groups on the relevant symmetric spaces. [1] [2] The topic was related to Minkowski's geometry of numbers and the early development of the study of arithmetic invariant of number fields such as the discriminant. Arithmetic groups can be thought of as a vast generalisation of the unit groups of number fields to a noncommutative setting.
The same groups also appeared in analytic number theory as the study of classical modular forms and their generalisations developed. Of course the two topics were related, as can be seen for example in Langlands' computation of the volume of certain fundamental domains using analytic methods. [3] This classical theory culminated with the work of Siegel, who showed the finiteness of the volume of a fundamental domain in many cases.
For the modern theory to begin foundational work was needed, and was provided by the work of Armand Borel, André Weil, Jacques Tits and others on algebraic groups. [4] [5] Shortly afterwards the finiteness of covolume was proven in full generality by Borel and Harish-Chandra. [6] Meanwhile, there was progress on the general theory of lattices in Lie groups by Atle Selberg, Grigori Margulis, David Kazhdan, M. S. Raghunathan and others. The state of the art after this period was essentially fixed in Raghunathan's treatise, published in 1972. [7]
In the seventies Margulis revolutionised the topic by proving that in "most" cases the arithmetic constructions account for all lattices in a given Lie group. [8] Some limited results in this direction had been obtained earlier by Selberg, but Margulis' methods (the use of ergodic-theoretical tools for actions on homogeneous spaces) were completely new in this context and were to be extremely influential on later developments, effectively renewing the old subject of geometry of numbers and allowing Margulis himself to prove the Oppenheim conjecture; stronger results (Ratner's theorems) were later obtained by Marina Ratner.
In another direction the classical topic of modular forms has blossomed into the modern theory of automorphic forms. The driving force behind this effort is mainly the Langlands program initiated by Robert Langlands. One of the main tool used there is the trace formula originating in Selberg's work [9] and developed in the most general setting by James Arthur. [10]
Finally arithmetic groups are often used to construct interesting examples of locally symmetric Riemannian manifolds. A particularly active research topic has been arithmetic hyperbolic 3-manifolds, which as William Thurston wrote, [11] "...often seem to have special beauty."
If is an algebraic subgroup of for some then we can define an arithmetic subgroup of as the group of integer points In general it is not so obvious how to make precise sense of the notion of "integer points" of a -group, and the subgroup defined above can change when we take different embeddings
Thus a better notion is to take for definition of an arithmetic subgroup of any group which is commensurable (this means that both and are finite sets) with a group defined as above (with respect to any embedding into ). With this definition, to the algebraic group is associated a collection of "discrete" subgroups all commensurable to each other.
A natural generalisation of the construction above is as follows: let be a number field with ring of integers and an algebraic group over . If we are given an embedding defined over then the subgroup can legitimately be called an arithmetic group.
On the other hand, the class of groups thus obtained is not larger than the class of arithmetic groups as defined above. Indeed, if we consider the algebraic group over obtained by restricting scalars from to and the -embedding induced by (where ) then the group constructed above is equal to .
The classical example of an arithmetic group is , or the closely related groups , and . For the group , or sometimes , is called the modular group as it is related to the modular curve. Similar examples are the Siegel modular groups .
Other well-known and studied examples include the Bianchi groups where is a square-free integer and is the ring of integers in the field and the Hilbert–Blumenthal modular groups .
Another classical example is given by the integral elements in the orthogonal group of a quadratic form defined over a number field, for example . A related construction is by taking the unit groups of orders in quaternion algebras over number fields (for example the Hurwitz quaternion order). Similar constructions can be performed with unitary groups of hermitian forms, a well-known example is the Picard modular group.
When is a Lie group one can define an arithmetic lattice in as follows: for any algebraic group defined over such that there is a morphism with compact kernel, the image of an arithmetic subgroup in is an arithmetic lattice in . Thus, for example, if and is a subgroup of then is an arithmetic lattice in (but there are many more, corresponding to other embeddings); for instance, is an arithmetic lattice in .
A lattice in a Lie group is usually defined as a discrete subgroup with finite covolume. The terminology introduced above is coherent with this, as a theorem due to Borel and Harish-Chandra states that an arithmetic subgroup in a semisimple Lie group is of finite covolume (the discreteness is obvious).
The theorem is more precise: it says that the arithmetic lattice is cocompact if and only if the "form" of used to define it (i.e. the -group ) is anisotropic. For example, the arithmetic lattice associated to a quadratic form in variables over will be co-compact in the associated orthogonal group if and only if the quadratic form does not vanish at any point in .
The spectacular result that Margulis obtained is a partial converse to the Borel—Harish-Chandra theorem: for certain Lie groups any lattice is arithmetic. This result is true for all irreducible lattice in semisimple Lie groups of real rank larger than two. [12] [13] For example, all lattices in are arithmetic when . The main new ingredient that Margulis used to prove his theorem was the superrigidity of lattices in higher-rank groups that he proved for this purpose.
Irreducibility only plays a role when has a factor of real rank one (otherwise the theorem always holds) and is not simple: it means that for any product decomposition the lattice is not commensurable to a product of lattices in each of the factors . For example, the lattice in is irreducible, while is not.
The Margulis arithmeticity (and superrigidity) theorem holds for certain rank 1 Lie groups, namely for and the exceptional group . [14] [15] It is known not to hold in all groups for (ref to GPS) and for when . There are no known non-arithmetic lattices in the groups when .
An arithmetic Fuchsian group is constructed from the following data: a totally real number field , a quaternion algebra over and an order in . It is asked that for one embedding the algebra be isomorphic to the matrix algebra and for all others to the Hamilton quaternions. Then the group of units is a lattice in which is isomorphic to and it is co-compact in all cases except when is the matrix algebra over All arithmetic lattices in are obtained in this way (up to commensurability).
Arithmetic Kleinian groups are constructed similarly except that is required to have exactly one complex place and to be the Hamilton quaternions at all real places. They exhaust all arithmetic commensurability classes in
For every semisimple Lie group it is in theory possible to classify (up to commensurability) all arithmetic lattices in , in a manner similar to the cases explained above. This amounts to classifying the algebraic groups whose real points are isomorphic up to a compact factor to . [16]
A congruence subgroup is (roughly) a subgroup of an arithmetic group defined by taking all matrices satisfying certain equations modulo an integer, for example the group of 2 by 2 integer matrices with diagonal (respectively off-diagonal) coefficients congruent to 1 (respectively 0) modulo a positive integer. These are always finite-index subgroups and the congruence subgroup problem roughly asks whether all subgroups are obtained in this way. The conjecture (usually attributed to Jean-Pierre Serre) is that this is true for (irreducible) arithmetic lattices in higher-rank groups and false in rank-one groups. It is still open in this generality but there are many results establishing it for specific lattices (in both its positive and negative cases).
Instead of taking integral points in the definition of an arithmetic lattice one can take points which are only integral away from a finite number of primes. This leads to the notion of an -arithmetic lattice (where stands for the set of primes inverted). The prototypical example is . They are also naturally lattices in certain topological groups, for example is a lattice in
The formal definition of an -arithmetic group for a finite set of prime numbers is the same as for arithmetic groups with replaced by where is the product of the primes in .
The Borel–Harish-Chandra theorem generalizes to -arithmetic groups as follows: if is an -arithmetic group in a -algebraic group then is a lattice in the locally compact group
Arithmetic groups with Kazhdan's property (T) or the weaker property () of Lubotzky and Zimmer can be used to construct expander graphs (Margulis), or even Ramanujan graphs (Lubotzky-Phillips-Sarnak [17] [18] ). Such graphs are known to exist in abundance by probabilistic results but the explicit nature of these constructions makes them interesting.
Congruence covers of arithmetic surfaces are known to give rise to surfaces with large injectivity radius. [19] Likewise the Ramanujan graphs constructed by Lubotzky-Phillips-Sarnak have large girth. It is in fact known that the Ramanujan property itself implies that the local girths of the graph are almost always large. [20]
Arithmetic groups can be used to construct isospectral manifolds. This was first realised by Marie-France Vignéras [21] and numerous variations on her construction have appeared since. The isospectrality problem is in fact particularly amenable to study in the restricted setting of arithmetic manifolds. [22]
A fake projective plane [23] is a complex surface which has the same Betti numbers as the projective plane but is not biholomorphic to it; the first example was discovered by Mumford. By work of Klingler (also proved independently by Yeung) all such are quotients of the 2-ball by arithmetic lattices in . The possible lattices have been classified by Prasad and Yeung and the classification was completed by Cartwright and Steger who determined, by computer assisted computations, all the fake projective planes in each Prasad-Yeung class.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .
In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset of the quaternions under multiplication. It is given by the group presentation
In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example is the subgroup of invertible 2 × 2 integer matrices of determinant 1 in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point. Closure under addition and subtraction means that a lattice must be a subgroup of the additive group of the points in the space, and the requirements of minimum and maximum distance can be summarized by saying that a lattice is a Delone set. More abstractly, a lattice can be described as a free abelian group of dimension which spans the vector space . For any basis of , the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice, and every lattice can be formed from a basis in this way. A lattice may be viewed as a regular tiling of a space by a primitive cell.
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.
In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation that has a finite kernel and is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and (more generally) semisimple algebraic groups are reductive.
Grigory Aleksandrovich Margulis is a Russian-American mathematician known for his work on lattices in Lie groups, and the introduction of methods from ergodic theory into diophantine approximation. He was awarded a Fields Medal in 1978, a Wolf Prize in Mathematics in 2005, and an Abel Prize in 2020, becoming the fifth mathematician to receive the three prizes. In 1991, he joined the faculty of Yale University, where he is currently the Erastus L. De Forest Professor of Mathematics.
In mathematics, more precisely in group theory and hyperbolic geometry, Arithmetic Kleinian groups are a special class of Kleinian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. An arithmetic hyperbolic three-manifold is the quotient of hyperbolic space by an arithmetic Kleinian group.
In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.
In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer.
In mathematical finite group theory, the Dempwolff group is a finite group of order 319979520 = 215·32·5·7·31, that is the unique nonsplit extension of by its natural module of order . The uniqueness of such a nonsplit extension was shown by Dempwolff (1972), and the existence by Thompson (1976), who showed using some computer calculations of Smith (1976) that the Dempwolff group is contained in the compact Lie group as the subgroup fixing a certain lattice in the Lie algebra of , and is also contained in the Thompson sporadic group (the full automorphism group of this lattice) as a maximal subgroup.
In mathematics, the trace field of a linear group is the field generated by the traces of its elements. It is mostly studied for Kleinian and Fuchsian groups, though related objects are used in the theory of lattices in Lie groups, often under the name field of definition.
Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.
In Lie theory, an area of mathematics, the Kazhdan–Margulis theorem is a statement asserting that a discrete subgroup in semisimple Lie groups cannot be too dense in the group. More precisely, in any such Lie group there is a uniform neighbourhood of the identity element such that every lattice in the group has a conjugate whose intersection with this neighbourhood contains only the identity. This result was proven in the 1960s by David Kazhdan and Grigory Margulis.
In mathematics, an approximate group is a subset of a group which behaves like a subgroup "up to a constant error", in a precise quantitative sense. For example, it is required that the set of products of elements in the subset be not much bigger than the subset itself. The notion was introduced in the 2010s but can be traced to older sources in additive combinatorics.
{{citation}}
: CS1 maint: location missing publisher (link)