Weil restriction

Last updated

In mathematics, restriction of scalars (also known as "Weil restriction") is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.

Contents

Definition

Let L/k be a finite extension of fields, and X a variety defined over L. The functor from k-schemes op to sets is defined by

(In particular, the k-rational points of are the L-rational points of X.) The variety that represents this functor is called the restriction of scalars, and is unique up to unique isomorphism if it exists.

From the standpoint of sheaves of sets, restriction of scalars is just a pushforward along the morphism and is right adjoint to fiber product of schemes, so the above definition can be rephrased in much more generality. In particular, one can replace the extension of fields by any morphism of ringed topoi, and the hypotheses on X can be weakened to e.g. stacks. This comes at the cost of having less control over the behavior of the restriction of scalars.

Alternative definition

Let be a morphism of schemes. For a -scheme , if the contravariant functor

is representable, then we call the corresponding -scheme, which we also denote with , the Weil restriction of with respect to . [1]

Where denotes the dual of the category of schemes over a fixed scheme .

Properties

For any finite extension of fields, the restriction of scalars takes quasiprojective varieties to quasiprojective varieties. The dimension of the resulting variety is multiplied by the degree of the extension.

Under appropriate hypotheses (e.g., flat, proper, finitely presented), any morphism of algebraic spaces yields a restriction of scalars functor that takes algebraic stacks to algebraic stacks, preserving properties such as Artin, Deligne-Mumford, and representability.

Examples and applications

Simple examples are the following:

  1. Let L be a finite extension of k of degree s. Then and is an s-dimensional affine space over Spec k.
  2. If X is an affine L-variety, defined by
    we can write as Spec , where () are new variables, and () are polynomials in given by taking a k-basis of L and setting and .

If a scheme is a group scheme then any Weil restriction of it will be as well. This is frequently used in number theory, for instance:

  1. The torus
    where denotes the multiplicative group, plays a significant role in Hodge theory, since the Tannakian category of real Hodge structures is equivalent to the category of representations of The real points have a Lie group structure isomorphic to . See Mumford–Tate group.
  2. The Weil restriction of a (commutative) group variety is again a (commutative) group variety of dimension if L is separable over k. Aleksander Momot applied Weil restrictions of commutative group varieties with and in order to derive new results in transcendence theory which were based on the increase in algebraic dimension.[ citation needed ]
  3. Restriction of scalars on abelian varieties (e.g. elliptic curves) yields abelian varieties, if L is separable over k. James Milne used this to reduce the Birch and Swinnerton-Dyer conjecture for abelian varieties over all number fields to the same conjecture over the rationals.
  4. In elliptic curve cryptography, the Weil descent attack uses the Weil restriction to transform a discrete logarithm problem on an elliptic curve over a finite extension field L/K, into a discrete log problem on the Jacobian variety of a hyperelliptic curve over the base field K, that is potentially easier to solve because of K's smaller size.

Weil restrictions vs. Greenberg transforms

Restriction of scalars is similar to the Greenberg transform, but does not generalize it, since the ring of Witt vectors on a commutative algebra A is not in general an A-algebra.

Related Research Articles

<span class="mw-page-title-main">Associative algebra</span> Algebraic structure with (a + b)(c + d) = ac + ad + bc + bd and (a)(bc) = (ab)(c)

In mathematics, an associative algebraA is an algebraic structure with compatible operations of addition, multiplication, and a scalar multiplication by elements in some field K. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over the field K. A standard first example of a K-algebra is a ring of square matrices over a field K, with the usual matrix multiplication.

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.

<span class="mw-page-title-main">Abelian variety</span>

In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.

<span class="mw-page-title-main">Group scheme</span>

In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, a unipotent elementr of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the field of real numbers, a rational point is more commonly called a real point.

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps to be carried out in terms of linear maps. The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a right-module and a left-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology, algebraic geometry, operator algebras and noncommutative geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.

This is a glossary of algebraic geometry.

In algebraic geometry, a presheaf with transfers is, roughly, a presheaf that, like cohomology theory, comes with pushforwards, “transfer” maps. Precisely, it is, by definition, a contravariant additive functor from the category of finite correspondences to the category of abelian groups.

References

  1. Bosch, Siegfried; Lütkebohmert, Werner; Raynaud, Michel (1990). Néron models. Berlin: Springer-Verlag. p. 191.

The original reference is Section 1.3 of Weil's 1959-1960 Lectures, published as:

Other references: