In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.
The words category and functor were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. [1] The latter used functor in a linguistic context; [2] see function word.
This article may be too technical for most readers to understand.(November 2023) |
Let C and D be categories. A functorF from C to D is a mapping that [3]
That is, functors must preserve identity morphisms and composition of morphisms.
There are many constructions in mathematics that would be functors but for the fact that they "turn morphisms around" and "reverse composition". We then define a contravariant functorF from C to D as a mapping that
Variance of functor (composite) [4]
Note that contravariant functors reverse the direction of composition.
Ordinary functors are also called covariant functors in order to distinguish them from contravariant ones. Note that one can also define a contravariant functor as a covariant functor on the opposite category . [5] Some authors prefer to write all expressions covariantly. That is, instead of saying is a contravariant functor, they simply write (or sometimes ) and call it a functor.
Contravariant functors are also occasionally called cofunctors. [6]
There is a convention which refers to "vectors"—i.e., vector fields, elements of the space of sections of a tangent bundle —as "contravariant" and to "covectors"—i.e., 1-forms, elements of the space of sections of a cotangent bundle —as "covariant". This terminology originates in physics, and its rationale has to do with the position of the indices ("upstairs" and "downstairs") in expressions such as for or for In this formalism it is observed that the coordinate transformation symbol (representing the matrix ) acts on the "covector coordinates" "in the same way" as on the basis vectors: —whereas it acts "in the opposite way" on the "vector coordinates" (but "in the same way" as on the basis covectors: ). This terminology is contrary to the one used in category theory because it is the covectors that have pullbacks in general and are thus contravariant, whereas vectors in general are covariant since they can be pushed forward. See also Covariance and contravariance of vectors.
Every functor induces the opposite functor, where and are the opposite categories to and . [7] By definition, maps objects and morphisms in the identical way as does . Since does not coincide with as a category, and similarly for , is distinguished from . For example, when composing with , one should use either or . Note that, following the property of opposite category, .
A bifunctor (also known as a binary functor) is a functor whose domain is a product category. For example, the Hom functor is of the type Cop × C → Set. It can be seen as a functor in two arguments; it is contravariant in one argument, covariant in the other.
A multifunctor is a generalization of the functor concept to n variables. So, for example, a bifunctor is a multifunctor with n = 2.
Two important consequences of the functor axioms are:
One can compose functors, i.e. if F is a functor from A to B and G is a functor from B to C then one can form the composite functor G ∘ F from A to C. Composition of functors is associative where defined. Identity of composition of functors is the identity functor. This shows that functors can be considered as morphisms in categories of categories, for example in the category of small categories.
A small category with a single object is the same thing as a monoid: the morphisms of a one-object category can be thought of as elements of the monoid, and composition in the category is thought of as the monoid operation. Functors between one-object categories correspond to monoid homomorphisms. So in a sense, functors between arbitrary categories are a kind of generalization of monoid homomorphisms to categories with more than one object.
Let C and D be categories. The collection of all functors from C to D forms the objects of a category: the functor category. Morphisms in this category are natural transformations between functors.
Functors are often defined by universal properties; examples are the tensor product, the direct sum and direct product of groups or vector spaces, construction of free groups and modules, direct and inverse limits. The concepts of limit and colimit generalize several of the above.
Universal constructions often give rise to pairs of adjoint functors.
Functors sometimes appear in functional programming. For instance, the programming language Haskell has a class Functor
where fmap
is a polytypic function used to map functions (morphisms on Hask, the category of Haskell types) [10] between existing types to functions between some new types. [11]
In category theory, a branch of mathematics, a Grothendieck topology is a structure on a category C that makes the objects of C act like the open sets of a topological space. A category together with a choice of Grothendieck topology is called a site.
In mathematics, the Yoneda lemma is a fundamental result in category theory. It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.
In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.
In mathematics, specifically category theory, adjunction is a relationship that two functors may exhibit, intuitively corresponding to a weak form of equivalence between two related categories. Two functors that stand in this relationship are known as adjoint functors, one being the left adjoint and the other the right adjoint. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.
Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
In mathematics, a direct limit is a way to construct a object from many objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any category. The way they are put together is specified by a system of homomorphisms between those smaller objects. The direct limit of the objects , where ranges over some directed set , is denoted by . This notation suppresses the system of homomorphisms; however, the limit depends on the system of homomorphisms.
In category theory, a branch of mathematics, a monad is a triple consisting of a functor T from a category to itself and two natural transformations that satisfy the conditions like associativity. For example, if are functors adjoint to each other, then together with determined by the adjoint relation is a monad.
In category theory, a branch of mathematics, the opposite category or dual categoryCop of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself. In symbols, .
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics. Establishing an equivalence involves demonstrating strong similarities between the mathematical structures concerned. In some cases, these structures may appear to be unrelated at a superficial or intuitive level, making the notion fairly powerful: it creates the opportunity to "translate" theorems between different kinds of mathematical structures, knowing that the essential meaning of those theorems is preserved under the translation.
In mathematics, particularly category theory, a representable functor is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.
In category theory, a faithful functor is a functor that is injective on hom-sets, and a full functor is surjective on hom-sets. A functor that has both properties is called a fully faithful functor.
Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space X to another topological space Y is associated the pullback functor taking bundles on Y to bundles on X. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.
In mathematics, specifically in category theory, an exponential object or map object is the categorical generalization of a function space in set theory. Categories with all finite products and exponential objects are called cartesian closed categories. Categories without adjoined products may still have an exponential law.
This is a glossary of properties and concepts in category theory in mathematics.
In mathematics, specifically in category theory, hom-sets give rise to important functors to the category of sets. These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics.
In category theory, a branch of mathematics, a presheaf on a category is a functor . If is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.
Isbell conjugacy is a fundamental construction of enriched category theory formally introduced by William Lawvere in 1986. That is a duality between covariant and contravariant representable presheaves associated with an objects of categories under the Yoneda embedding. In addition, Lawvere is states as follows; "Then the conjugacies are the first step toward expressing the duality between space and quantity fundamental to mathematics".
In algebraic geometry, a functor represented by a schemeX is a set-valued contravariant functor on the category of schemes such that the value of the functor at each scheme S is the set of all morphisms . The functor F is then said to be naturally equivalent to the functor of points of X; and the scheme X is said to represent the functor F, and to classify geometric objects over S given by F.