In category theory , a traced monoidal category is a category with some extra structure which gives a reasonable notion of feedback.
A traced symmetric monoidal category is a symmetric monoidal category C together with a family of functions
T r X , Y U : C ( X ⊗ U , Y ⊗ U ) → C ( X , Y ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}:\mathbf {C} (X\otimes U,Y\otimes U)\to \mathbf {C} (X,Y)} called a trace , satisfying the following conditions:
naturality in X {\displaystyle X} : for every f : X ⊗ U → Y ⊗ U {\displaystyle f:X\otimes U\to Y\otimes U} and g : X ′ → X {\displaystyle g:X'\to X} , T r X ′ , Y U ( f ∘ ( g ⊗ i d U ) ) = T r X , Y U ( f ) ∘ g {\displaystyle \mathrm {Tr} _{X',Y}^{U}(f\circ (g\otimes \mathrm {id} _{U}))=\mathrm {Tr} _{X,Y}^{U}(f)\circ g} Naturality in X naturality in Y {\displaystyle Y} : for every f : X ⊗ U → Y ⊗ U {\displaystyle f:X\otimes U\to Y\otimes U} and g : Y → Y ′ {\displaystyle g:Y\to Y'} , T r X , Y ′ U ( ( g ⊗ i d U ) ∘ f ) = g ∘ T r X , Y U ( f ) {\displaystyle \mathrm {Tr} _{X,Y'}^{U}((g\otimes \mathrm {id} _{U})\circ f)=g\circ \mathrm {Tr} _{X,Y}^{U}(f)} Naturality in Y dinaturality in U {\displaystyle U} : for every f : X ⊗ U → Y ⊗ U ′ {\displaystyle f:X\otimes U\to Y\otimes U'} and g : U ′ → U {\displaystyle g:U'\to U} T r X , Y U ( ( i d Y ⊗ g ) ∘ f ) = T r X , Y U ′ ( f ∘ ( i d X ⊗ g ) ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}((\mathrm {id} _{Y}\otimes g)\circ f)=\mathrm {Tr} _{X,Y}^{U'}(f\circ (\mathrm {id} _{X}\otimes g))} Dinaturality in U vanishing I: for every f : X ⊗ I → Y ⊗ I {\displaystyle f:X\otimes I\to Y\otimes I} , (with ρ X : X ⊗ I ≅ X {\displaystyle \rho _{X}\colon X\otimes I\cong X} being the right unitor), T r X , Y I ( f ) = ρ Y ∘ f ∘ ρ X − 1 {\displaystyle \mathrm {Tr} _{X,Y}^{I}(f)=\rho _{Y}\circ f\circ \rho _{X}^{-1}} Vanishing I vanishing II: for every f : X ⊗ U ⊗ V → Y ⊗ U ⊗ V {\displaystyle f:X\otimes U\otimes V\to Y\otimes U\otimes V} T r X , Y U ( T r X ⊗ U , Y ⊗ U V ( f ) ) = T r X , Y U ⊗ V ( f ) {\displaystyle \mathrm {Tr} _{X,Y}^{U}(\mathrm {Tr} _{X\otimes U,Y\otimes U}^{V}(f))=\mathrm {Tr} _{X,Y}^{U\otimes V}(f)} Vanishing II superposing: for every f : X ⊗ U → Y ⊗ U {\displaystyle f:X\otimes U\to Y\otimes U} and g : W → Z {\displaystyle g:W\to Z} , g ⊗ T r X , Y U ( f ) = T r W ⊗ X , Z ⊗ Y U ( g ⊗ f ) {\displaystyle g\otimes \mathrm {Tr} _{X,Y}^{U}(f)=\mathrm {Tr} _{W\otimes X,Z\otimes Y}^{U}(g\otimes f)} Superposing T r X , X X ( γ X , X ) = i d X {\displaystyle \mathrm {Tr} _{X,X}^{X}(\gamma _{X,X})=\mathrm {id} _{X}} (where γ {\displaystyle \gamma } is the symmetry of the monoidal category).
Yanking This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.