In category theory, a branch of mathematics, a **natural transformation** provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Indeed, this intuition can be formalized to define so-called functor categories. Natural transformations are, after categories and functors, one of the most fundamental notions of category theory and consequently appear in the majority of its applications.

- Definition
- Examples
- Opposite group
- Abelianization
- Hurewicz homomorphism
- Determinant
- Double dual of a vector space
- Finite calculus
- Tensor-hom adjunction
- Unnatural isomorphism
- Example: fundamental group of torus
- Example: dual of a finite-dimensional vector space
- Operations with natural transformations
- Functor categories
- More examples
- Yoneda lemma
- Historical notes
- See also
- Notes
- References
- External links

If and are functors between the categories and , then a **natural transformation** from to is a family of morphisms that satisfies two requirements.

- The natural transformation must associate, to every object in , a morphism between objects of . The morphism is called the
**component**of at . - Components must be such that for every morphism in we have:

The last equation can conveniently be expressed by the commutative diagram

If both and are contravariant, the vertical arrows in this diagram are reversed. If is a natural transformation from to , we also write or . This is also expressed by saying the family of morphisms is **natural** in .

If, for every object in , the morphism is an isomorphism in , then is said to be a **natural isomorphism** (or sometimes **natural equivalence** or **isomorphism of functors**). Two functors and are called *naturally isomorphic* or simply *isomorphic* if there exists a natural isomorphism from to .

An **infranatural transformation** from to is simply a family of morphisms , for all in . Thus a natural transformation is an infranatural transformation for which for every morphism . The **naturalizer** of , nat, is the largest subcategory of containing all the objects of on which restricts to a natural transformation.

Statements such as

- "Every group is naturally isomorphic to its opposite group"

abound in modern mathematics. We will now give the precise meaning of this statement as well as its proof. Consider the category of all groups with group homomorphisms as morphisms. If is a group, we define its opposite group as follows: is the same set as , and the operation is defined by . All multiplications in are thus "turned around". Forming the opposite group becomes a (covariant) functor from to if we define for any group homomorphism . Note that is indeed a group homomorphism from to :

The content of the above statement is:

- "The identity functor is naturally isomorphic to the opposite functor "

To prove this, we need to provide isomorphisms for every group , such that the above diagram commutes. Set . The formulas and show that is a group homomorphism with inverse . To prove the naturality, we start with a group homomorphism and show , i.e. for all in . This is true since and every group homomorphism has the property .

Given a group , we can define its abelianization . Let denote the projection map onto the cosets of . This homomorphism is "natural in ", i.e., it defines a natural transformation, which we now check. Let be a group. For any homomorphism , we have that is contained in the kernel of , because any homomorphism into an abelian group kills the commutator subgroup. Then factors through as for the unique homomorphism . This makes a functor and a natural transformation, but not a natural isomorphism, from the identity functor to .

Functors and natural transformations abound in algebraic topology, with the Hurewicz homomorphisms serving as examples. For any pointed topological space and positive integer there exists a group homomorphism

from the -th homotopy group of to the -th homology group of . Both and are functors from the category **Top ^{*}** of pointed topological spaces to the category

Given commutative rings and with a ring homomorphism , the respective groups of invertible matrices and inherit a homomorphism which we denote by , obtained by applying to each matrix entry. Similarly, restricts to a group homomorphism , where denotes the group of units of . In fact, and are functors from the category of commutative rings to . The determinant on the group , denoted by , is a group homomorphism

which is natural in : because the determinant is defined by the same formula for every ring, holds. This makes the determinant a natural transformation from to .

If is a field, then for every vector space over we have a "natural" injective linear map from the vector space into its double dual. These maps are "natural" in the following sense: the double dual operation is a functor, and the maps are the components of a natural transformation from the identity functor to the double dual functor.

For every abelian group , the set of functions from the integers to the underlying set of forms an abelian group under pointwise addition. (Here is the standard forgetful functor .) Given an morphism , the map given by left composing with the elements of the former is itself a homomorphism of abelian groups; in this way we obtain a functor . The finite difference operator taking each function to is a map from to itself, and the collection of such maps gives a natural transformation .

Consider the category of abelian groups and group homomorphisms. For all abelian groups , and we have a group isomorphism

- .

These isomorphisms are "natural" in the sense that they define a natural transformation between the two involved functors . (Here "op" is the opposite category of , not to be confused with the trivial opposite group functor on !)

This is formally the tensor-hom adjunction, and is an archetypal example of a pair of adjoint functors. Natural transformations arise frequently in conjunction with adjoint functors, and indeed, adjoint functors are defined by a certain natural isomorphism. Additionally, every pair of adjoint functors comes equipped with two natural transformations (generally not isomorphisms) called the *unit* and *counit*.

The notion of a natural transformation is categorical, and states (informally) that a particular map between functors can be done consistently over an entire category. Informally, a particular map (esp. an isomorphism) between individual objects (not entire categories) is referred to as a "natural isomorphism", meaning implicitly that it is actually defined on the entire category, and defines a natural transformation of functors; formalizing this intuition was a motivating factor in the development of category theory. Conversely, a particular map between particular objects may be called an **unnatural isomorphism** (or "this isomorphism is not natural") if the map cannot be extended to a natural transformation on the entire category. Given an object a functor (taking for simplicity the first functor to be the identity) and an isomorphism proof of unnaturality is most easily shown by giving an automorphism that does not commute with this isomorphism (so ). More strongly, if one wishes to prove that and are not naturally isomorphic, without reference to a particular isomorphism, this requires showing that for *any* isomorphism , there is some with which it does not commute; in some cases a single automorphism works for all candidate isomorphisms while in other cases one must show how to construct a different for each isomorphism. The maps of the category play a crucial role – any infranatural transform is natural if the only maps are the identity map, for instance.

This is similar (but more categorical) to concepts in group theory or module theory, where a given decomposition of an object into a direct sum is "not natural", or rather "not unique", as automorphisms exist that do not preserve the direct sum decomposition – see Structure theorem for finitely generated modules over a principal ideal domain § Uniqueness for example.

Some authors distinguish notationally, using for a natural isomorphism and for an unnatural isomorphism, reserving for equality (usually equality of maps).

As an example of the distinction between the functorial statement and individual objects, consider homotopy groups of a product space, specifically the fundamental group of the torus.

The homotopy groups of a product space are naturally the product of the homotopy groups of the components, with the isomorphism given by projection onto the two factors, fundamentally because maps into a product space are exactly products of maps into the components – this is a functorial statement.

However, the torus (which is abstractly a product of two circles) has fundamental group isomorphic to , but the splitting is not natural. Note the use of , , and :^{ [lower-alpha 1] }

This abstract isomorphism with a product is not natural, as some isomorphisms of do not preserve the product: the self-homeomorphism of (thought of as the quotient space ) given by (geometrically a Dehn twist about one of the generating curves) acts as this matrix on (it's in the general linear group of invertible integer matrices), which does not preserve the decomposition as a product because it is not diagonal. However, if one is given the torus as a product – equivalently, given a decomposition of the space – then the splitting of the group follows from the general statement earlier. In categorical terms, the relevant category (preserving the structure of a product space) is "maps of product spaces, namely a pair of maps between the respective components".

Naturality is a categorical notion, and requires being very precise about exactly what data is given – the torus as a space that happens to be a product (in the category of spaces and continuous maps) is different from the torus presented as a product (in the category of products of two spaces and continuous maps between the respective components).

Every finite-dimensional vector space is isomorphic to its dual space, but there may be many different isomorphisms between the two spaces. There is in general no natural isomorphism between a finite-dimensional vector space and its dual space.^{ [1] } However, related categories (with additional structure and restrictions on the maps) do have a natural isomorphism, as described below.

The dual space of a finite-dimensional vector space is again a finite-dimensional vector space of the same dimension, and these are thus isomorphic, since dimension is the only invariant of finite-dimensional vector spaces over a given field. However, in the absence of additional constraints (such as a requirement that maps preserve the chosen basis), the map from a space to its dual is not unique, and thus such an isomorphism requires a choice, and is "not natural". On the category of finite-dimensional vector spaces and linear maps, one can define an infranatural isomorphism from vector spaces to their dual by choosing an isomorphism for each space (say, by choosing a basis for every vector space and taking the corresponding isomorphism), but this will not define a natural transformation. Intuitively this is because it required a choice, rigorously because *any* such choice of isomorphisms will not commute with, say, the zero map; see ( Mac Lane & Birkhoff 1999 , §VI.4) for detailed discussion.

Starting from finite-dimensional vector spaces (as objects) and the identity and dual functors, one can define a natural isomorphism, but this requires first adding additional structure, then restricting the maps from "all linear maps" to "linear maps that respect this structure". Explicitly, for each vector space, require that it comes with the data of an isomorphism to its dual, . In other words, take as objects vector spaces with a nondegenerate bilinear form . This defines an infranatural isomorphism (isomorphism for each object). One then restricts the maps to only those maps that commute with the isomorphisms: or in other words, preserve the bilinear form: . (These maps define the *naturalizer* of the isomorphisms.) The resulting category, with objects finite-dimensional vector spaces with a nondegenerate bilinear form, and maps linear transforms that respect the bilinear form, by construction has a natural isomorphism from the identity to the dual (each space has an isomorphism to its dual, and the maps in the category are required to commute). Viewed in this light, this construction (add transforms for each object, restrict maps to commute with these) is completely general, and does not depend on any particular properties of vector spaces.

In this category (finite-dimensional vector spaces with a nondegenerate bilinear form, maps linear transforms that respect the bilinear form), the dual of a map between vector spaces can be identified as a transpose. Often for reasons of geometric interest this is specialized to a subcategory, by requiring that the nondegenerate bilinear forms have additional properties, such as being symmetric (orthogonal matrices), symmetric and positive definite (inner product space), symmetric sesquilinear (Hermitian spaces), skew-symmetric and totally isotropic (symplectic vector space), etc. – in all these categories a vector space is naturally identified with its dual, by the nondegenerate bilinear form.

If and are natural transformations between functors , then we can compose them to get a natural transformation . This is done componentwise: .

This "vertical composition" of natural transformation is associative and has an identity, and allows one to consider the collection of all functors itself as a category (see below under Functor categories).

Natural transformations also have a "horizontal composition". If is a natural transformation between functors and is a natural transformation between functors , then the composition of functors allows a composition of natural transformations where .

This operation is also associative with identity, and the identity coincides with that for vertical composition. The two operations are related by an identity which exchanges vertical composition with horizontal composition: if we have four natural transformations as shown on the image to the right, then the following identity holds

If is a natural transformation between functors , and is another functor, then we can form the natural transformation by defining

If on the other hand is a functor, the natural transformation is defined by

If is any category and is a small category, we can form the functor category having as objects all functors from to and as morphisms the natural transformations between those functors. This forms a category since for any functor there is an identity natural transformation (which assigns to every object the identity morphism on ) and the composition of two natural transformations (the "vertical composition" above) is again a natural transformation.

The isomorphisms in are precisely the natural isomorphisms. That is, a natural transformation is a natural isomorphism if and only if there exists a natural transformation such that and .

The functor category is especially useful if arises from a directed graph. For instance, if is the category of the directed graph • → •, then has as objects the morphisms of , and a morphism between and in is a pair of morphisms and in such that the "square commutes", i.e. .

More generally, one can build the 2-category whose

- 0-cells (objects) are the small categories,
- 1-cells (arrows) between two objects and are the functors from to ,
- 2-cells between two 1-cells (functors) and are the natural transformations from to .

The horizontal and vertical compositions are the compositions between natural transformations described previously. A functor category is then simply a hom-category in this category (smallness issues aside).

Every limit and colimit provides an example for a simple natural transformation, as a cone amounts to a natural transformation with the diagonal functor as domain. Indeed, if limits and colimits are defined directly in terms of their universal property, they are universal morphisms in a functor category.

If is an object of a locally small category , then the assignment defines a covariant functor . This functor is called * representable * (more generally, a representable functor is any functor naturally isomorphic to this functor for an appropriate choice of ). The natural transformations from a representable functor to an arbitrary functor are completely known and easy to describe; this is the content of the Yoneda lemma.

Saunders Mac Lane, one of the founders of category theory, is said to have remarked, "I didn't invent categories to study functors; I invented them to study natural transformations."^{ [2] } Just as the study of groups is not complete without a study of homomorphisms, so the study of categories is not complete without the study of functors. The reason for Mac Lane's comment is that the study of functors is itself not complete without the study of natural transformations.

The context of Mac Lane's remark was the axiomatic theory of homology. Different ways of constructing homology could be shown to coincide: for example in the case of a simplicial complex the groups defined directly would be isomorphic to those of the singular theory. What cannot easily be expressed without the language of natural transformations is how homology groups are compatible with morphisms between objects, and how two equivalent homology theories not only have the same homology groups, but also the same morphisms between those groups.

- ↑
**Z**^{n}could be defined as the*n*-fold product of**Z**, or as the product of**Z**^{n − 1}and**Z**, which are subtly different sets (though they can be naturally identified, which would be notated as ≅). Here we've fixed a definition, and in any case they coincide for*n*= 2.

In mathematics, specifically category theory, a **functor** is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied.

In category theory, a branch of mathematics, a **universal property** is an important property which is satisfied by a **universal morphism**. Universal morphisms can also be thought of more abstractly as initial or terminal objects of a comma category. Universal properties occur almost everywhere in mathematics, and hence the precise category theoretic concept helps point out similarities between different branches of mathematics, some of which may even seem unrelated.

In mathematics, the **Yoneda lemma** is arguably the most important result in category theory. It is an abstract result on functors of the type *morphisms into a fixed object*. It is a vast generalisation of Cayley's theorem from group theory. It allows the embedding of any locally small category into a category of functors defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category. It is an important tool that underlies several modern developments in algebraic geometry and representation theory. It is named after Nobuo Yoneda.

In category theory, a branch of mathematics, the abstract notion of a **limit** captures the essential properties of universal constructions such as products, pullbacks and inverse limits. The dual notion of a **colimit** generalizes constructions such as disjoint unions, direct sums, coproducts, pushouts and direct limits.

In mathematics, specifically category theory, **adjunction** is a relationship that two functors may have. Two functors that stand in this relationship are known as **adjoint functors**, one being the **left adjoint** and the other the **right adjoint**. Pairs of adjoint functors are ubiquitous in mathematics and often arise from constructions of "optimal solutions" to certain problems, such as the construction of a free group on a set in algebra, or the construction of the Stone–Čech compactification of a topological space in topology.

In category theory, an **epimorphism** is a morphism *f* : *X* → *Y* that is right-cancellative in the sense that, for all objects *Z* and all morphisms *g*_{1}, *g*_{2}: *Y* → *Z*,

In mathematics, and especially in category theory, a **commutative diagram** is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the same result. It is said that commutative diagrams play the role in category theory that equations play in algebra.

**Homological algebra** is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology and abstract algebra at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert.

In category theory, the **coproduct**, or **categorical sum**, is a construction which includes as examples the disjoint union of sets and of topological spaces, the free product of groups, and the direct sum of modules and vector spaces. The coproduct of a family of objects is essentially the "least specific" object to which each object in the family admits a morphism. It is the category-theoretic dual notion to the categorical product, which means the definition is the same as the product but with all arrows reversed. Despite this seemingly innocuous change in the name and notation, coproducts can be and typically are dramatically different from products.

In category theory, a branch of mathematics, a **monad** is an endofunctor, together with two natural transformations required to fulfill certain coherence conditions. Monads are used in the theory of pairs of adjoint functors, and they generalize closure operators on partially ordered sets to arbitrary categories.

In category theory, a branch of mathematics, a **functor category** is a category where the objects are the functors and the morphisms are natural transformations between the functors. Functor categories are of interest for two main reasons:

In mathematics, particularly category theory, a **representable functor** is a certain functor from an arbitrary category into the category of sets. Such functors give representations of an abstract category in terms of known structures allowing one to utilize, as much as possible, knowledge about the category of sets in other settings.

In category theory, a **faithful functor** is a functor that is injective when restricted to each set of morphisms that have a given source and target.

In mathematics, a **triangulated category** is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology.

**Fibred categories** are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which *inverse images* of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space *X* to another topological space *Y* is associated the pullback functor taking bundles on *Y* to bundles on *X*. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories with "descent". Fibrations also play an important role in categorical semantics of type theory, and in particular that of dependent type theories.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, specifically in category theory, hom-sets, i.e. sets of morphisms between objects, give rise to important functors to the category of sets. These functors are called **hom-functors** and have numerous applications in category theory and other branches of mathematics.

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two *coherence maps*—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

In mathematics, the **tensor-hom adjunction** is that the tensor product and hom-functor form an adjoint pair:

In mathematics, especially in the area of topology known as algebraic topology, an **induced homomorphism** is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space *X* to a space *Y* induces a group homomorphism from the fundamental group of *X* to the fundamental group of *Y*.

- ↑ ( Mac Lane & Birkhoff 1999 , §VI.4)
- ↑ ( Mac Lane 1998 , §I.4)

- Mac Lane, Saunders (1998),
*Categories for the Working Mathematician*, Graduate Texts in Mathematics**5**(2nd ed.), Springer-Verlag, p. 16, ISBN 0-387-98403-8 - Mac Lane, Saunders; Birkhoff, Garrett (1999),
*Algebra*(3rd ed.), AMS Chelsea Publishing, ISBN 0-8218-1646-2 . - Awodey, Steve (2010).
*Category theory*. Oxford New York: Oxford University Press. p. 156. ISBN 978-0199237180. - Lane, Saunders (1992).
*Sheaves in geometry and logic : a first introduction to topos theory*. New York: Springer-Verlag. p. 13. ISBN 0387977104.

- nLab, a wiki project on mathematics, physics and philosophy with emphasis on the
*n*-categorical point of view - André Joyal, CatLab, a wiki project dedicated to the exposition of categorical mathematics
- Hillman, Chris. "A Categorical Primer". CiteSeerX 10.1.1.24.3264 :Missing or empty
`|url=`

(help) formal introduction to category theory. - J. Adamek, H. Herrlich, G. Stecker, Abstract and Concrete Categories-The Joy of Cats
- Stanford Encyclopedia of Philosophy: "Category Theory"—by Jean-Pierre Marquis. Extensive bibliography.
- List of academic conferences on category theory
- Baez, John, 1996,"The Tale of
*n*-categories." An informal introduction to higher categories. - WildCats is a category theory package for Mathematica. Manipulation and visualization of objects, morphisms, categories, functors, natural transformations, universal properties.
- The catsters, a YouTube channel about category theory.
- Video archive of recorded talks relevant to categories, logic and the foundations of physics.
- Interactive Web page which generates examples of categorical constructions in the category of finite sets.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.