Transpose

Last updated
The transpose A of a matrix A can be obtained by reflecting the elements along its main diagonal. Repeating the process on the transposed matrix returns the elements to their original position. Matrix transpose.gif
The transpose A of a matrix A can be obtained by reflecting the elements along its main diagonal. Repeating the process on the transposed matrix returns the elements to their original position.

In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT (among other notations). [1]

Contents

The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2] In the case of a logical matrix representing a binary relation R, the transpose corresponds to the converse relation RT.

Transpose of a matrix

Definition

The transpose of a matrix A, denoted by AT, [3] A, A, , [4] [5] A′, [6] Atr, tA or At, may be constructed by any one of the following methods:

  1. Reflect A over its main diagonal (which runs from top-left to bottom-right) to obtain AT
  2. Write the rows of A as the columns of AT
  3. Write the columns of A as the rows of AT

Formally, the i-th row, j-th column element of AT is the j-th row, i-th column element of A:

If A is an m × n matrix, then AT is an n × m matrix.

In the case of square matrices, AT may also denote the Tth power of the matrix A. For avoiding a possible confusion, many authors use left upperscripts, that is, they denote the transpose as TA. An advantage of this notation is that no parentheses are needed when exponents are involved: as (TA)n = T(An), notation TAn is not ambiguous.

In this article this confusion is avoided by never using the symbol T as a variable name.

Matrix definitions involving transposition

A square matrix whose transpose is equal to itself is called a symmetric matrix ; that is, A is symmetric if

A square matrix whose transpose is equal to its negative is called a skew-symmetric matrix ; that is, A is skew-symmetric if

A square complex matrix whose transpose is equal to the matrix with every entry replaced by its complex conjugate (denoted here with an overline) is called a Hermitian matrix (equivalent to the matrix being equal to its conjugate transpose); that is, A is Hermitian if

A square complex matrix whose transpose is equal to the negation of its complex conjugate is called a skew-Hermitian matrix ; that is, A is skew-Hermitian if

A square matrix whose transpose is equal to its inverse is called an orthogonal matrix ; that is, A is orthogonal if

A square complex matrix whose transpose is equal to its conjugate inverse is called a unitary matrix ; that is, A is unitary if

Examples

Properties

Let A and B be matrices and c be a scalar.

Products

If A is an m × n matrix and AT is its transpose, then the result of matrix multiplication with these two matrices gives two square matrices: A AT is m × m and ATA is n × n. Furthermore, these products are symmetric matrices. Indeed, the matrix product A AT has entries that are the inner product of a row of A with a column of AT. But the columns of AT are the rows of A, so the entry corresponds to the inner product of two rows of A. If pi j is the entry of the product, it is obtained from rows i and j in A. The entry pj i is also obtained from these rows, thus pi j = pj i, and the product matrix (pi j) is symmetric. Similarly, the product ATA is a symmetric matrix.

A quick proof of the symmetry of A AT results from the fact that it is its own transpose:

[7]

Implementation of matrix transposition on computers

Illustration of row- and column-major order Row and column major order.svg
Illustration of row- and column-major order

On a computer, one can often avoid explicitly transposing a matrix in memory by simply accessing the same data in a different order. For example, software libraries for linear algebra, such as BLAS, typically provide options to specify that certain matrices are to be interpreted in transposed order to avoid the necessity of data movement.

However, there remain a number of circumstances in which it is necessary or desirable to physically reorder a matrix in memory to its transposed ordering. For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm, transposing the matrix in memory (to make the columns contiguous) may improve performance by increasing memory locality.

Ideally, one might hope to transpose a matrix with minimal additional storage. This leads to the problem of transposing an n × m matrix in-place, with O(1) additional storage or at most storage much less than mn. For n  m, this involves a complicated permutation of the data elements that is non-trivial to implement in-place. Therefore, efficient in-place matrix transposition has been the subject of numerous research publications in computer science, starting in the late 1950s, and several algorithms have been developed.

Transposes of linear maps and bilinear forms

As the main use of matrices is to represent linear maps between finite-dimensional vector spaces, the transpose is an operation on matrices that may be seen as the representation of some operation on linear maps.

This leads to a much more general definition of the transpose that works on every linear map, even when linear maps cannot be represented by matrices (such as in the case of infinite dimensional vector spaces). In the finite dimensional case, the matrix representing the transpose of a linear map is the transpose of the matrix representing the linear map, independently of the basis choice.

Transpose of a linear map

Let X# denote the algebraic dual space of an R-module X. Let X and Y be R-modules. If u : XY is a linear map, then its algebraic adjoint or dual, [8] is the map u# : Y#X# defined by ffu. The resulting functional u#(f) is called the pullback of f by u. The following relation characterizes the algebraic adjoint of u [9]

u#(f), x = f, u(x) for all fY# and xX

where , is the natural pairing (i.e. defined by h, z := h(z)). This definition also applies unchanged to left modules and to vector spaces. [10]

The definition of the transpose may be seen to be independent of any bilinear form on the modules, unlike the adjoint (below).

The continuous dual space of a topological vector space (TVS) X is denoted by X'. If X and Y are TVSs then a linear map u : XY is weakly continuous if and only if u#(Y') X', in which case we let tu : Y'X' denote the restriction of u# to Y'. The map tu is called the transpose [11] of u.

If the matrix A describes a linear map with respect to bases of V and W, then the matrix AT describes the transpose of that linear map with respect to the dual bases.

Transpose of a bilinear form

Every linear map to the dual space u : XX# defines a bilinear form B : X × XF, with the relation B(x, y) = u(x)(y). By defining the transpose of this bilinear form as the bilinear form tB defined by the transpose tu : X##X# i.e. tB(y, x) = tu(Ψ(y))(x), we find that B(x, y) = tB(y, x). Here, Ψ is the natural homomorphism XX## into the double dual.

Adjoint

If the vector spaces X and Y have respectively nondegenerate bilinear forms BX and BY, a concept known as the adjoint, which is closely related to the transpose, may be defined:

If u : XY is a linear map between vector spaces X and Y, we define g as the adjoint of u if g : YX satisfies

for all xX and yY.

These bilinear forms define an isomorphism between X and X#, and between Y and Y#, resulting in an isomorphism between the transpose and adjoint of u. The matrix of the adjoint of a map is the transposed matrix only if the bases are orthonormal with respect to their bilinear forms. In this context, many authors however, use the term transpose to refer to the adjoint as defined here.

The adjoint allows us to consider whether g : YX is equal to u −1 : YX. In particular, this allows the orthogonal group over a vector space X with a quadratic form to be defined without reference to matrices (nor the components thereof) as the set of all linear maps XX for which the adjoint equals the inverse.

Over a complex vector space, one often works with sesquilinear forms (conjugate-linear in one argument) instead of bilinear forms. The Hermitian adjoint of a map between such spaces is defined similarly, and the matrix of the Hermitian adjoint is given by the conjugate transpose matrix if the bases are orthonormal.

See also

Related Research Articles

In linear algebra, the rank of a matrix A is the dimension of the vector space generated by its columns. This corresponds to the maximal number of linearly independent columns of A. This, in turn, is identical to the dimension of the vector space spanned by its rows. Rank is thus a measure of the "nondegenerateness" of the system of linear equations and linear transformation encoded by A. There are multiple equivalent definitions of rank. A matrix's rank is one of its most fundamental characteristics.

In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector where is the transpose of . More generally, a Hermitian matrix is positive-definite if the real number is positive for every nonzero complex column vector where denotes the conjugate transpose of

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors, their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

<span class="mw-page-title-main">Singular value decomposition</span> Matrix decomposition

In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any matrix. It is related to the polar decomposition.

<span class="mw-page-title-main">Square matrix</span> Matrix with the same number of rows and columns

In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order . Any two square matrices of the same order can be added and multiplied.

In mathematics, a complex square matrix A is normal if it commutes with its conjugate transpose A*:

<span class="mw-page-title-main">Symplectic group</span> Mathematical group

In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted Sp(2n, F) and Sp(n) for positive integer n and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by . Many authors prefer slightly different notations, usually differing by factors of 2. The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group Sp(2n, C) is denoted Cn, and Sp(n) is the compact real form of Sp(2n, C). Note that when we refer to the (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension n.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In mathematics, a Hermitian matrix is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the i-th row and j-th column is equal to the complex conjugate of the element in the j-th row and i-th column, for all indices i and j:

In linear algebra, the adjugate or classical adjoint of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

In mathematics, the conjugate transpose, also known as the Hermitian transpose, of an complex matrix is an matrix obtained by transposing and applying complex conjugation to each entry. There are several notations, such as or , , or .

In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation

<span class="mw-page-title-main">Projection (linear algebra)</span> Idempotent linear transformation from a vector space to itself

In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any vector, it gives the same result as if it were applied once. It leaves its image unchanged. This definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.

In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : VW between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically:

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

<span class="mw-page-title-main">Vectorization (mathematics)</span> Conversion of a matrix or a tensor to a vector

In mathematics, especially in linear algebra and matrix theory, the vectorization of a matrix is a linear transformation which converts the matrix into a vector. Specifically, the vectorization of a m × n matrix A, denoted vec(A), is the mn × 1 column vector obtained by stacking the columns of the matrix A on top of one another:

<span class="mw-page-title-main">Classical group</span>

In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

References

  1. Nykamp, Duane. "The transpose of a matrix". Math Insight. Retrieved September 8, 2020.
  2. Arthur Cayley (1858) "A memoir on the theory of matrices", Philosophical Transactions of the Royal Society of London, 148 : 17–37. The transpose (or "transposition") is defined on page 31.
  3. T.A. Whitelaw (1 April 1991). Introduction to Linear Algebra, 2nd edition. CRC Press. ISBN   978-0-7514-0159-2.
  4. "Transpose of a Matrix Product (ProofWiki)". ProofWiki. Retrieved 4 Feb 2021.
  5. "What is the best symbol for vector/matrix transpose?". Stack Exchange . Retrieved 4 Feb 2021.
  6. Weisstein, Eric W. "Transpose". mathworld.wolfram.com. Retrieved 2020-09-08.
  7. Gilbert Strang (2006) Linear Algebra and its Applications 4th edition, page 51, Thomson Brooks/Cole ISBN   0-03-010567-6
  8. Schaefer & Wolff 1999, p. 128.
  9. Halmos 1974 , §44
  10. Bourbaki 1989 , II §2.5
  11. Trèves 2006, p. 240.

Further reading