Transpose of a linear map

Last updated

In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.

Contents

Definition

Let denote the algebraic dual space of a vector space Let and be vector spaces over the same field If is a linear map, then its algebraic adjoint or dual, [1] is the map defined by The resulting functional is called the pullback of by

The continuous dual space of a topological vector space (TVS) is denoted by If and are TVSs then a linear map is weakly continuous if and only if in which case we let denote the restriction of to The map is called the transpose [2] or algebraic adjoint of The following identity characterizes the transpose of : [3]

where is the natural pairing defined by

Properties

The assignment produces an injective linear map between the space of linear operators from to and the space of linear operators from to If then the space of linear maps is an algebra under composition of maps, and the assignment is then an antihomomorphism of algebras, meaning that In the language of category theory, taking the dual of vector spaces and the transpose of linear maps is therefore a contravariant functor from the category of vector spaces over to itself. One can identify with using the natural injection into the double dual.

and if the linear operator is bounded then the operator norm of is equal to the norm of ; that is [5] [6]

and moreover,

Polars

Suppose now that is a weakly continuous linear operator between topological vector spaces and with continuous dual spaces and respectively. Let denote the canonical dual system, defined by where and are said to be orthogonal if For any subsets and let

denote the (absolute) polar of in (resp. of in ).

and

Annihilators

Suppose and are topological vector spaces and is a weakly continuous linear operator (so ). Given subsets and define their annihilators (with respect to the canonical dual system) by [6]

and

Duals of quotient spaces

Let be a closed vector subspace of a Hausdorff locally convex space and denote the canonical quotient map by

Assume is endowed with the quotient topology induced by the quotient map Then the transpose of the quotient map is valued in and

is a TVS-isomorphism onto If is a Banach space then is also an isometry. [6] Using this transpose, every continuous linear functional on the quotient space is canonically identified with a continuous linear functional in the annihilator of

Duals of vector subspaces

Let be a closed vector subspace of a Hausdorff locally convex space If and if is a continuous linear extension of to then the assignment induces a vector space isomorphism

which is an isometry if is a Banach space. [6]

Denote the inclusion map by

The transpose of the inclusion map is

whose kernel is the annihilator and which is surjective by the Hahn–Banach theorem. This map induces an isomorphism of vector spaces

Representation as a matrix

If the linear map is represented by the matrix with respect to two bases of and then is represented by the transpose matrix with respect to the dual bases of and hence the name. Alternatively, as is represented by acting to the right on column vectors, is represented by the same matrix acting to the left on row vectors. These points of view are related by the canonical inner product on which identifies the space of column vectors with the dual space of row vectors.

Relation to the Hermitian adjoint

The identity that characterizes the transpose, that is, is formally similar to the definition of the Hermitian adjoint, however, the transpose and the Hermitian adjoint are not the same map. The transpose is a map and is defined for linear maps between any vector spaces and without requiring any additional structure. The Hermitian adjoint maps and is only defined for linear maps between Hilbert spaces, as it is defined in terms of the inner product on the Hilbert space. The Hermitian adjoint therefore requires more mathematical structure than the transpose.

However, the transpose is often used in contexts where the vector spaces are both equipped with a nondegenerate bilinear form such as the Euclidean dot product or another real inner product. In this case, the nondegenerate bilinear form is often used implicitly to map between the vector spaces and their duals, to express the transposed map as a map For a complex Hilbert space, the inner product is sesquilinear and not bilinear, and these conversions change the transpose into the adjoint map.

More precisely: if and are Hilbert spaces and is a linear map then the transpose of and the Hermitian adjoint of which we will denote respectively by and are related. Denote by and the canonical antilinear isometries of the Hilbert spaces and onto their duals. Then is the following composition of maps: [10]

Applications to functional analysis

Suppose that and are topological vector spaces and that is a linear map, then many of 's properties are reflected in

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In mathematics, a self-adjoint operator on an infinite-dimensional complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.

In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.

In mathematics, a linear form is a linear map from a vector space to its field of scalars.

In mathematics, a function between two complex vector spaces is said to be antilinear or conjugate-linear if

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak-* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule

In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.

In functional and convex analysis, and related disciplines of mathematics, the polar set is a special convex set associated to any subset of a vector space lying in the dual space The bipolar of a subset is the polar of but lies in .

In functional analysis and related areas of mathematics a polar topology, topology of -convergence or topology of uniform convergence on the sets of is a method to define locally convex topologies on the vector spaces of a pairing.

In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.

In mathematics, the bipolar theorem is a theorem in functional analysis that characterizes the bipolar of a set. In convex analysis, the bipolar theorem refers to a necessary and sufficient conditions for a cone to be equal to its bipolar. The bipolar theorem can be seen as a special case of the Fenchel–Moreau theorem.

In mathematics, a dual system, dual pair, or duality over a field is a triple consisting of two vector spaces and over and a non-degenerate bilinear map .

In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) is the continuous dual space of equipped with the strong (dual) topology or the topology of uniform convergence on bounded subsets of where this topology is denoted by or The coarsest polar topology is called weak topology. The strong dual space plays such an important role in modern functional analysis, that the continuous dual space is usually assumed to have the strong dual topology unless indicated otherwise. To emphasize that the continuous dual space, has the strong dual topology, or may be written.

In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

References

    1. Schaefer & Wolff 1999, p. 128.
    2. Trèves 2006, p. 240.
    3. Halmos (1974 , §44)
    4. 1 2 3 4 5 Schaefer & Wolff 1999 , pp. 129–130
    5. 1 2 Trèves 2006, pp. 240–252.
    6. 1 2 3 4 Rudin 1991, pp. 92–115.
    7. 1 2 3 Schaefer & Wolff 1999, pp. 128–130.
    8. Trèves 2006, pp. 199–200.
    9. Trèves 2006, pp. 382–383.
    10. Trèves 2006, p. 488.

    Bibliography