In mathematics, more specifically functional analysis and operator theory, the notion of unbounded operator provides an abstract framework for dealing with differential operators, unbounded observables in quantum mechanics, and other cases.
The term "unbounded operator" can be misleading, since
In contrast to bounded operators, unbounded operators on a given space do not form an algebra, nor even a linear space, because each one is defined on its own domain.
The term "operator" often means "bounded linear operator", but in the context of this article it means "unbounded operator", with the reservations made above.
The theory of unbounded operators developed in the late 1920s and early 1930s as part of developing a rigorous mathematical framework for quantum mechanics. [1] The theory's development is due to John von Neumann [2] and Marshall Stone. [3] Von Neumann introduced using graphs to analyze unbounded operators in 1932. [4]
Let X, Y be Banach spaces. An unbounded operator (or simply operator) T : D(T) → Y is a linear map T from a linear subspace D(T) ⊆ X—the domain of T—to the space Y. [5] Contrary to the usual convention, T may not be defined on the whole space X.
An operator T is said to be closed if its graph Γ(T) is a closed set. [6] (Here, the graph Γ(T) is a linear subspace of the direct sum X ⊕ Y, defined as the set of all pairs (x, Tx), where x runs over the domain of T .) Explicitly, this means that for every sequence {xn} of points from the domain of T such that xn → x and Txn → y, it holds that x belongs to the domain of T and Tx = y. [6] The closedness can also be formulated in terms of the graph norm: an operator T is closed if and only if its domain D(T) is a complete space with respect to the norm: [7]
An operator T is said to be densely defined if its domain is dense in X. [5] This also includes operators defined on the entire space X, since the whole space is dense in itself. The denseness of the domain is necessary and sufficient for the existence of the adjoint (if X and Y are Hilbert spaces) and the transpose; see the sections below.
If T : D(T) → Y is closed, densely defined and continuous on its domain, then its domain is all of X. [nb 1]
A densely defined symmetric[ clarification needed ] operator T on a Hilbert space H is called bounded from below if T + a is a positive operator for some real number a. That is, ⟨Tx|x⟩ ≥ −a ||x||2 for all x in the domain of T (or alternatively ⟨Tx|x⟩ ≥ a ||x||2 since a is arbitrary). [8] If both T and −T are bounded from below then T is bounded. [8]
Let C([0, 1]) denote the space of continuous functions on the unit interval, and let C1([0, 1]) denote the space of continuously differentiable functions. We equip with the supremum norm, , making it a Banach space. Define the classical differentiation operator d/dx : C1([0, 1]) → C([0, 1]) by the usual formula:
Every differentiable function is continuous, so C1([0, 1]) ⊆ C([0, 1]). We claim that d/dx : C([0, 1]) → C([0, 1]) is a well-defined unbounded operator, with domain C1([0, 1]). For this, we need to show that is linear and then, for example, exhibit some such that and .
This is a linear operator, since a linear combination a f + bg of two continuously differentiable functions f , g is also continuously differentiable, and
The operator is not bounded. For example,
satisfy
but
as .
The operator is densely defined, and closed.
The same operator can be treated as an operator Z → Z for many choices of Banach space Z and not be bounded between any of them. At the same time, it can be bounded as an operator X → Y for other pairs of Banach spaces X, Y, and also as operator Z → Z for some topological vector spaces Z.[ clarification needed ] As an example let I ⊂ R be an open interval and consider
where:
The adjoint of an unbounded operator can be defined in two equivalent ways. Let be an unbounded operator between Hilbert spaces.
First, it can be defined in a way analogous to how one defines the adjoint of a bounded operator. Namely, the adjoint of T is defined as an operator with the property: More precisely, is defined in the following way. If is such that is a continuous linear functional on the domain of T, then is declared to be an element of and after extending the linear functional to the whole space via the Hahn–Banach theorem, it is possible to find some in such that since Riesz representation theorem allows the continuous dual of the Hilbert space to be identified with the set of linear functionals given by the inner product. This vector is uniquely determined by if and only if the linear functional is densely defined; or equivalently, if T is densely defined. Finally, letting completes the construction of which is necessarily a linear map. The adjoint exists if and only if T is densely defined.
By definition, the domain of consists of elements in such that is continuous on the domain of T. Consequently, the domain of could be anything; it could be trivial (that is, contains only zero). [9] It may happen that the domain of is a closed hyperplane and vanishes everywhere on the domain. [10] [11] Thus, boundedness of on its domain does not imply boundedness of T. On the other hand, if is defined on the whole space then T is bounded on its domain and therefore can be extended by continuity to a bounded operator on the whole space. [nb 2] If the domain of is dense, then it has its adjoint [12] A closed densely defined operator T is bounded if and only if is bounded. [nb 3]
The other equivalent definition of the adjoint can be obtained by noticing a general fact. Define a linear operator as follows: [12] Since is an isometric surjection, it is unitary. Hence: is the graph of some operator if and only if T is densely defined. [13] A simple calculation shows that this "some" satisfies: for every x in the domain of T. Thus is the adjoint of T.
It follows immediately from the above definition that the adjoint is closed. [12] In particular, a self-adjoint operator (meaning ) is closed. An operator T is closed and densely defined if and only if [nb 4]
Some well-known properties for bounded operators generalize to closed densely defined operators. The kernel of a closed operator is closed. Moreover, the kernel of a closed densely defined operator coincides with the orthogonal complement of the range of the adjoint. That is, [14] von Neumann's theorem states that and are self-adjoint, and that and both have bounded inverses. [15] If has trivial kernel, T has dense range (by the above identity.) Moreover:
In contrast to the bounded case, it is not necessary that since, for example, it is even possible that does not exist.[ citation needed ] This is, however, the case if, for example, T is bounded. [16]
A densely defined, closed operator T is called normal if it satisfies the following equivalent conditions: [17]
Every self-adjoint operator is normal.
Let be an operator between Banach spaces. Then the transpose (or dual) of is the linear operator satisfying: for all and Here, we used the notation: [18]
The necessary and sufficient condition for the transpose of to exist is that is densely defined (for essentially the same reason as to adjoints, as discussed above.)
For any Hilbert space there is the anti-linear isomorphism: given by where Through this isomorphism, the transpose relates to the adjoint in the following way: [19] where . (For the finite-dimensional case, this corresponds to the fact that the adjoint of a matrix is its conjugate transpose.) Note that this gives the definition of adjoint in terms of a transpose.
Closed linear operators are a class of linear operators on Banach spaces. They are more general than bounded operators, and therefore not necessarily continuous, but they still retain nice enough properties that one can define the spectrum and (with certain assumptions) functional calculus for such operators. Many important linear operators which fail to be bounded turn out to be closed, such as the derivative and a large class of differential operators.
Let X, Y be two Banach spaces. A linear operator A : D(A) ⊆ X → Y is closed if for every sequence {xn} in D(A) converging to x in X such that Axn → y ∈ Y as n → ∞ one has x ∈ D(A) and Ax = y. Equivalently, A is closed if its graph is closed in the direct sum X ⊕ Y.
Given a linear operator A, not necessarily closed, if the closure of its graph in X ⊕ Y happens to be the graph of some operator, that operator is called the closure of A, and we say that A is closable. Denote the closure of A by A. It follows that A is the restriction of A to D(A).
A core (or essential domain) of a closable operator is a subset C of D(A) such that the closure of the restriction of A to C is A.
Consider the derivative operator A = d/dx where X = Y = C([a, b]) is the Banach space of all continuous functions on an interval [a, b]. If one takes its domain D(A) to be C1([a, b]), then A is a closed operator which is not bounded. [20] On the other hand if {{math|1=D(A) = [[smooth function|C∞([a, b])]]}}, then A will no longer be closed, but it will be closable, with the closure being its extension defined on C1([a, b]).
An operator T on a Hilbert space is symmetric if and only if for each x and y in the domain of T we have . A densely defined operator T is symmetric if and only if it agrees with its adjoint T∗ restricted to the domain of T, in other words when T∗ is an extension of T. [21]
In general, if T is densely defined and symmetric, the domain of the adjoint T∗ need not equal the domain of T. If T is symmetric and the domain of T and the domain of the adjoint coincide, then we say that T is self-adjoint. [22] Note that, when T is self-adjoint, the existence of the adjoint implies that T is densely defined and since T∗ is necessarily closed, T is closed.
A densely defined operator T is symmetric, if the subspace Γ(T) (defined in a previous section) is orthogonal to its image J(Γ(T)) under J (where J(x,y):=(y,-x)). [nb 6]
Equivalently, an operator T is self-adjoint if it is densely defined, closed, symmetric, and satisfies the fourth condition: both operators T – i, T + i are surjective, that is, map the domain of T onto the whole space H. In other words: for every x in H there exist y and z in the domain of T such that Ty – iy = x and Tz + iz = x. [23]
An operator T is self-adjoint, if the two subspaces Γ(T), J(Γ(T)) are orthogonal and their sum is the whole space [12]
This approach does not cover non-densely defined closed operators. Non-densely defined symmetric operators can be defined directly or via graphs, but not via adjoint operators.
A symmetric operator is often studied via its Cayley transform.
An operator T on a complex Hilbert space is symmetric if and only if the number is real for all x in the domain of T. [21]
A densely defined closed symmetric operator T is self-adjoint if and only if T∗ is symmetric. [24] It may happen that it is not. [25] [26]
A densely defined operator T is called positive [8] (or nonnegative [27] ) if its quadratic form is nonnegative, that is, for all x in the domain of T. Such operator is necessarily symmetric.
The operator T∗T is self-adjoint [28] and positive [8] for every densely defined, closed T.
The spectral theorem applies to self-adjoint operators [29] and moreover, to normal operators, [30] [31] but not to densely defined, closed operators in general, since in this case the spectrum can be empty. [32] [33]
A symmetric operator defined everywhere is closed, therefore bounded, [6] which is the Hellinger–Toeplitz theorem. [34]
By definition, an operator T is an extension of an operator S if Γ(S) ⊆ Γ(T). [35] An equivalent direct definition: for every x in the domain of S, x belongs to the domain of T and Sx = Tx. [5] [35]
Note that an everywhere defined extension exists for every operator, which is a purely algebraic fact explained at Discontinuous linear map § General existence theorem and based on the axiom of choice. If the given operator is not bounded then the extension is a discontinuous linear map. It is of little use since it cannot preserve important properties of the given operator (see below), and usually is highly non-unique.
An operator T is called closable if it satisfies the following equivalent conditions: [6] [35] [36]
Not all operators are closable. [37]
A closable operator T has the least closed extension called the closure of T. The closure of the graph of T is equal to the graph of [6] [35] Other, non-minimal closed extensions may exist. [25] [26]
A densely defined operator T is closable if and only if T∗ is densely defined. In this case and [12] [38]
If S is densely defined and T is an extension of S then S∗ is an extension of T∗. [39]
Every symmetric operator is closable. [40]
A symmetric operator is called maximal symmetric if it has no symmetric extensions, except for itself. [21] Every self-adjoint operator is maximal symmetric. [21] The converse is wrong. [41]
An operator is called essentially self-adjoint if its closure is self-adjoint. [40] An operator is essentially self-adjoint if and only if it has one and only one self-adjoint extension. [24]
A symmetric operator may have more than one self-adjoint extension, and even a continuum of them. [26]
A densely defined, symmetric operator T is essentially self-adjoint if and only if both operators T – i, T + i have dense range. [42]
Let T be a densely defined operator. Denoting the relation "T is an extension of S" by S ⊂ T (a conventional abbreviation for Γ(S) ⊆ Γ(T)) one has the following. [43]
The class of self-adjoint operators is especially important in mathematical physics. Every self-adjoint operator is densely defined, closed and symmetric. The converse holds for bounded operators but fails in general. Self-adjointness is substantially more restricting than these three properties. The famous spectral theorem holds for self-adjoint operators. In combination with Stone's theorem on one-parameter unitary groups it shows that self-adjoint operators are precisely the infinitesimal generators of strongly continuous one-parameter unitary groups, see Self-adjoint operator § Self-adjoint extensions in quantum mechanics. Such unitary groups are especially important for describing time evolution in classical and quantum mechanics.
In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.
In linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. That is, for all ∊ V. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its Hermitian adjoint N*, that is: NN* = N*N.
In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra. All trace-class operators are compact operators.
In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.
In mathematics as well as physics, a linear operator acting on an inner product space is called positive-semidefinite if, for every , and , where is the domain of . Positive-semidefinite operators are denoted as . The operator is said to be positive-definite, and written , if for all .
In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.
In functional analysis, a branch of mathematics, the Hellinger–Toeplitz theorem states that an everywhere-defined symmetric operator on a Hilbert space with inner product is bounded. By definition, an operator A is symmetric if
In mathematics, specifically in operator theory, each linear operator on an inner product space defines a Hermitian adjoint operator on that space according to the rule
In functional analysis, a branch of mathematics, the Borel functional calculus is a functional calculus, which has particularly broad scope. Thus for instance if T is an operator, applying the squaring function s → s2 to T yields the operator T2. Using the functional calculus for larger classes of functions, we can for example define rigorously the "square root" of the (negative) Laplacian operator −Δ or the exponential
In functional analysis, the Friedrichs extension is a canonical self-adjoint extension of a non-negative densely defined symmetric operator. It is named after the mathematician Kurt Friedrichs. This extension is particularly useful in situations where an operator may fail to be essentially self-adjoint or whose essential self-adjointness is difficult to show.
The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:
In mathematics, particularly in functional analysis, a projection-valued measure is a function defined on certain subsets of a fixed set and whose values are self-adjoint projections on a fixed Hilbert space. A projection-valued measure (PVM) is formally similar to a real-valued measure, except that its values are self-adjoint projections rather than real numbers. As in the case of ordinary measures, it is possible to integrate complex-valued functions with respect to a PVM; the result of such an integration is a linear operator on the given Hilbert space.
In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators in the topology induced by the operator norm. As such, results from matrix theory can sometimes be extended to compact operators using similar arguments. By contrast, the study of general operators on infinite-dimensional spaces often requires a genuinely different approach.
In functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self-adjoint extensions. This problem arises, for example, when one needs to specify domains of self-adjointness for formal expressions of observables in quantum mechanics. Other applications of solutions to this problem can be seen in various moment problems.
Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra.
In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
This is a glossary for the terminology in a mathematical field of functional analysis.
This article incorporates material from Closed operator on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.