Operator space

Last updated

In functional analysis, a discipline within mathematics, an operator space is a normed vector space (not necessarily a Banach space) [1] "given together with an isometric embedding into the space B(H) of all bounded operators on a Hilbert space H.". [2] [3] The appropriate morphisms between operator spaces are completely bounded maps.

Contents

Equivalent formulations

Equivalently, an operator space is a subspace of a C*-algebra.

Category of operator spaces

The category of operator spaces includes operator systems and operator algebras. For operator systems, in addition to an induced matrix norm of an operator space, one also has an induced matrix order. For operator algebras, there is still the additional ring structure.

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematics, specifically in functional analysis, a C-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:

<span class="mw-page-title-main">Inner product space</span> Generalization of the dot product; used to define Hilbert spaces

In mathematics, an inner product space is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in . Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or scalar product of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.

<span class="mw-page-title-main">Linear algebra</span> Branch of mathematics

Linear algebra is the branch of mathematics concerning linear equations such as:

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces. Informally, the operator norm of a linear map is the maximum factor by which it "lengthens" vectors.

In functional analysis, a discipline within mathematics, given a C*-algebra A, the Gelfand–Naimark–Segal construction establishes a correspondence between cyclic *-representations of A and certain linear functionals on A. The correspondence is shown by an explicit construction of the *-representation from the state. It is named for Israel Gelfand, Mark Naimark, and Irving Segal.

In the mathematical discipline of linear algebra, the Schur decomposition or Schur triangulation, named after Issai Schur, is a matrix decomposition. It allows one to write an arbitrary complex square matrix as unitarily equivalent to an upper triangular matrix whose diagonal elements are the eigenvalues of the original matrix.

In mathematics, a bilinear form is a bilinear map V × VK on a vector space V over a field K. In other words, a bilinear form is a function B : V × VK that is linear in each argument separately:

In functional analysis, a branch of mathematics, a compact operator is a linear operator , where are normed vector spaces, with the property that maps bounded subsets of to relatively compact subsets of . Such an operator is necessarily a bounded operator, and so continuous. Some authors require that are Banach, but the definition can be extended to more general spaces.

In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices.

In the mathematical field of linear algebra and convex analysis, the numerical range or field of values of a complex matrix A is the set

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space.

In the mathematical field of functional analysis, a nuclear C*-algebra is a C*-algebra such that for every C*-algebra the injective and projective C*-cross norms coincides on the algebraic tensor product and the completion of with respect to this norm is a C*-algebra. This property was first studied by Takesaki (1964) under the name "Property T", which is not related to Kazhdan's property T.

<span class="mw-page-title-main">Gilles Pisier</span> French mathematician

Gilles I. Pisier is a professor of mathematics at the Pierre and Marie Curie University and a distinguished professor and A.G. and M.E. Owen Chair of Mathematics at the Texas A&M University. He is known for his contributions to several fields of mathematics, including functional analysis, probability theory, harmonic analysis, and operator theory. He has also made fundamental contributions to the theory of C*-algebras. Gilles is the younger brother of French actress Marie-France Pisier.

In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as universal representation techniques in the literature.

Vern Ival Paulsen is an American mathematician, focusing in operator theory, operator algebras, frame theory, C*-algebras, and quantum information theory.

References

  1. Paulsen, Vern (2002). Completely Bounded Maps and Operator Algebras. Cambridge University Press. p. 26. ISBN   978-0-521-81669-4 . Retrieved 2022-03-08.
  2. Pisier, Gilles (2003). Introduction to Operator Space Theory. Cambridge University Press. p. 1. ISBN   978-0-521-81165-1 . Retrieved 2008-12-18.
  3. Blecher, David P.; Christian Le Merdy (2004). Operator Algebras and Their Modules: An Operator Space Approach. Oxford University Press. First page of Preface. ISBN   978-0-19-852659-9 . Retrieved 2008-12-18.