Transfer operator

Last updated

In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system.

Contents

The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Perron–Frobenius operator or RuellePerronFrobenius operator, in reference to the applicability of the Perron–Frobenius theorem to the determination of the eigenvalues of the operator.

Definition

The iterated function to be studied is a map for an arbitrary set .

The transfer operator is defined as an operator acting on the space of functions as

where is an auxiliary valuation function. When has a Jacobian determinant , then is usually taken to be .

The above definition of the transfer operator can be shown to be the point-set limit of the measure-theoretic pushforward of g: in essence, the transfer operator is the direct image functor in the category of measurable spaces. The left-adjoint of the PerronFrobenius operator is the Koopman operator or composition operator. The general setting is provided by the Borel functional calculus.

As a general rule, the transfer operator can usually be interpreted as a (left-)shift operator acting on a shift space. The most commonly studied shifts are the subshifts of finite type. The adjoint to the transfer operator can likewise usually be interpreted as a right-shift. Particularly well studied right-shifts include the Jacobi operator and the Hessenberg matrix, both of which generate systems of orthogonal polynomials via a right-shift.

Applications

Whereas the iteration of a function naturally leads to a study of the orbits of points of X under iteration (the study of point dynamics), the transfer operator defines how (smooth) maps evolve under iteration. Thus, transfer operators typically appear in physics problems, such as quantum chaos and statistical mechanics, where attention is focused on the time evolution of smooth functions. In turn, this has medical applications to rational drug design, through the field of molecular dynamics.

It is often the case that the transfer operator is positive, has discrete positive real-valued eigenvalues, with the largest eigenvalue being equal to one. For this reason, the transfer operator is sometimes called the FrobeniusPerron operator.

The eigenfunctions of the transfer operator are usually fractals. When the logarithm of the transfer operator corresponds to a quantum Hamiltonian, the eigenvalues will typically be very closely spaced, and thus even a very narrow and carefully selected ensemble of quantum states will encompass a large number of very different fractal eigenstates with non-zero support over the entire volume. This can be used to explain many results from classical statistical mechanics, including the irreversibility of time and the increase of entropy.

The transfer operator of the Bernoulli map is exactly solvable and is a classic example of deterministic chaos; the discrete eigenvalues correspond to the Bernoulli polynomials. This operator also has a continuous spectrum consisting of the Hurwitz zeta function.

The transfer operator of the Gauss map is called the GaussKuzminWirsing (GKW) operator. The theory of the GKW dates back to a hypothesis by Gauss on continued fractions and is closely related to the Riemann zeta function.

See also

Related Research Articles

<span class="mw-page-title-main">Dynamical system</span> Mathematical model of the time dependence of a point in space

In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space, such as in a parametric curve. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water in a pipe, the random motion of particles in the air, and the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a set, without the need of a smooth space-time structure defined on it.

<span class="mw-page-title-main">Bernoulli process</span> Random process of binary (boolean) random variables

In probability and statistics, a Bernoulli process is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variablesXi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin. Every variable Xi in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution. Much of what can be said about the Bernoulli process can also be generalized to more than two outcomes ; this generalization is known as the Bernoulli scheme.

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics as well as systems in thermodynamic equilibrium.

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.

In mathematics, the Hilbert–Pólya conjecture states that the non-trivial zeros of the Riemann zeta function correspond to eigenvalues of a self-adjoint operator. It is a possible approach to the Riemann hypothesis, by means of spectral theory.

In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory to the greatest extent possible.

The spectrum of a linear operator that operates on a Banach space is a fundamental concept of functional analysis. The spectrum consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In mathematics, the Artin–Mazur zeta function, named after Michael Artin and Barry Mazur, is a function that is used for studying the iterated functions that occur in dynamical systems and fractals.

In mathematics, the Gauss–Kuzmin–Wirsing operator is the transfer operator of the Gauss map that takes a positive number to the fractional part of its reciprocal. It is named after Carl Gauss, Rodion Kuzmin, and Eduard Wirsing. It occurs in the study of continued fractions; it is also related to the Riemann zeta function.

<span class="mw-page-title-main">Iterated function</span> Result of repeatedly applying a mathematical function

In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated.

<span class="mw-page-title-main">Dyadic transformation</span> Doubling map on the unit interval

The dyadic transformation is the mapping

In matrix theory, the Perron–Frobenius theorem, proved by Oskar Perron and Georg Frobenius, asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to have strictly positive components, and also asserts a similar statement for certain classes of nonnegative matrices. This theorem has important applications to probability theory ; to the theory of dynamical systems ; to economics ; to demography ; to social networks ; to Internet search engines (PageRank); and even to ranking of American football teams. The first to discuss the ordering of players within tournaments using Perron–Frobenius eigenvectors is Edmund Landau.

<span class="mw-page-title-main">Baker's map</span> Chaotic map from the unit square into itself

In dynamical systems theory, the baker's map is a chaotic map from the unit square into itself. It is named after a kneading operation that bakers apply to dough: the dough is cut in half, and the two halves are stacked on one another, and compressed.

In mathematics, the composition operator with symbol is a linear operator defined by the rule

In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially.

In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various relations all stem from the same underlying principle; that is, the relation for one special function can be derived from that for the others, and is simply a manifestation of the same identity in different guises.

<span class="mw-page-title-main">Google matrix</span> Stochastic matrix representing links between entities

A Google matrix is a particular stochastic matrix that is used by Google's PageRank algorithm. The matrix represents a graph with edges representing links between pages. The PageRank of each page can then be generated iteratively from the Google matrix using the power method. However, in order for the power method to converge, the matrix must be stochastic, irreducible and aperiodic.

In algebra and number theory, a distribution is a function on a system of finite sets into an abelian group which is analogous to an integral: it is thus the algebraic analogue of a distribution in the sense of generalised function.

References