In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. [1] [2] Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems (such as Axiom A systems) exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. [3] This is essentially the Markov partition. The term shift is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem [4] [5] shows that Bernoulli shifts are isomorphic when their entropy is equal.
A Bernoulli scheme is a discrete-time stochastic process where each independent random variable may take on one of N distinct possible values, with the outcome i occurring with probability , with i = 1, ..., N, and
The sample space is usually denoted as
as a shorthand for
The associated measure is called the Bernoulli measure [6]
The σ-algebra on X is the product sigma algebra; that is, it is the (countable) direct product of the σ-algebras of the finite set {1, ..., N}. Thus, the triplet
is a measure space. A basis of is the cylinder sets. Given a cylinder set , its measure is
The equivalent expression, using the notation of probability theory, is
for the random variables
The Bernoulli scheme, as any stochastic process, may be viewed as a dynamical system by endowing it with the shift operator T where
Since the outcomes are independent, the shift preserves the measure, and thus T is a measure-preserving transformation. The quadruplet
is a measure-preserving dynamical system, and is called a Bernoulli scheme or a Bernoulli shift. It is often denoted by
The N = 2 Bernoulli scheme is called a Bernoulli process. The Bernoulli shift can be understood as a special case of the Markov shift, where all entries in the adjacency matrix are one, the corresponding graph thus being a clique.
The Hamming distance provides a natural metric on a Bernoulli scheme. Another important metric is the so-called metric, defined via a supremum over string matches. [7]
Let and be two strings of symbols. A match is a sequence M of pairs of indexes into the string, i.e. pairs such that understood to be totally ordered. That is, each individual subsequence and are ordered: and likewise
The -distance between and is
where the supremum is being taken over all matches between and . This satisfies the triangle inequality only when and so is not quite a true metric; despite this, it is commonly called a "distance" in the literature.
Most of the properties of the Bernoulli scheme follow from the countable direct product, rather than from the finite base space. Thus, one may take the base space to be any standard probability space , and define the Bernoulli scheme as
This works because the countable direct product of a standard probability space is again a standard probability space.
As a further generalization, one may replace the integers by a countable discrete group , so that
For this last case, the shift operator is replaced by the group action
for group elements and understood as a function (any direct product can be understood to be the set of functions , as this is the exponential object). The measure is taken as the Haar measure, which is invariant under the group action:
These generalizations are also commonly called Bernoulli schemes, as they still share most properties with the finite case.
Ya. Sinai demonstrated that the Kolmogorov entropy of a Bernoulli scheme is given by [8] [9]
This may be seen as resulting from the general definition of the entropy of a Cartesian product of probability spaces, which follows from the asymptotic equipartition property. For the case of a general base space (i.e. a base space which is not countable), one typically considers the relative entropy. So, for example, if one has a countable partition of the base Y, such that , one may define the entropy as
In general, this entropy will depend on the partition; however, for many dynamical systems, it is the case that the symbolic dynamics is independent of the partition (or rather, there are isomorphisms connecting the symbolic dynamics of different partitions, leaving the measure invariant), and so such systems can have a well-defined entropy independent of the partition.
The Ornstein isomorphism theorem states that two Bernoulli schemes with the same entropy are isomorphic. [4] The result is sharp, [10] in that very similar, non-scheme systems, such as Kolmogorov automorphisms, do not have this property.
The Ornstein isomorphism theorem is in fact considerably deeper: it provides a simple criterion by which many different measure-preserving dynamical systems can be judged to be isomorphic to Bernoulli schemes. The result was surprising, as many systems previously believed to be unrelated proved to be isomorphic. These include all finite[ clarification needed ] stationary stochastic processes, subshifts of finite type, finite Markov chains, Anosov flows, and Sinai's billiards: these are all isomorphic to Bernoulli schemes.
For the generalized case, the Ornstein isomorphism theorem still holds if the group G is a countably infinite amenable group. [11] [12]
An invertible, measure-preserving transformation of a standard probability space (Lebesgue space) is called a Bernoulli automorphism if it is isomorphic to a Bernoulli shift. [13]
A system is termed "loosely Bernoulli" if it is Kakutani-equivalent to a Bernoulli shift; in the case of zero entropy, if it is Kakutani-equivalent to an irrational rotation of a circle.
In information theory, the entropy of a random variable is the average level of "information", "surprise", or "uncertainty" inherent to the variable's possible outcomes. Given a discrete random variable , which takes values in the alphabet and is distributed according to :
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as mass and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.
In mathematical analysis and in probability theory, a σ-algebra on a set X is a nonempty collection Σ of subsets of X closed under complement, countable unions, and countable intersections. The pair is called a measurable space.
In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.
In probability and statistics, a Bernoulli process is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variablesXi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin. Every variable Xi in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution. Much of what can be said about the Bernoulli process can also be generalized to more than two outcomes ; this generalization is known as the Bernoulli scheme.
In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:
In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics as well as systems in thermodynamic equilibrium.
In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is
In mathematics, a field of sets is a mathematical structure consisting of a pair consisting of a set and a family of subsets of called an algebra over that contains the empty set as an element, and is closed under the operations of taking complements in finite unions, and finite intersections.
In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.
In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-algebra generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.
In mathematics, a π-system on a set is a collection of certain subsets of such that
In mathematics, a positive (or signed) measure μ defined on a σ-algebra Σ of subsets of a set X is called a finite measure if μ(X) is a finite real number (rather than ∞), and a set A in Σ is of finite measure if μ(A) < ∞. The measure μ is called σ-finite if X is a countable union of measurable sets with finite measure. A set in a measure space is said to have σ-finite measure if it is a countable union of measurable sets with finite measure. A measure being σ-finite is a weaker condition than being finite, i.e. all finite measures are σ-finite but there are (many) σ-finite measures that are not finite.
In mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, ergodic automorphisms of the n-torus, and the continued fraction transform.
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.
In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.
In measure theory, a branch of mathematics that studies generalized notions of volumes, an s-finite measure is a special type of measure. An s-finite measure is more general than a finite measure, but allows one to generalize certain proofs for finite measures.
In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and
In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.
In mathematics, a Kolmogorov automorphism, K-automorphism, K-shift or K-system is an invertible, measure-preserving automorphism defined on a standard probability space that obeys Kolmogorov's zero–one law. All Bernoulli automorphisms are K-automorphisms, but not vice versa. Many ergodic dynamical systems have been shown to have the K-property, although more recent research has shown that many of these are in fact Bernoulli automorphisms.