Bernoulli scheme

Last updated

In mathematics, the Bernoulli scheme or Bernoulli shift is a generalization of the Bernoulli process to more than two possible outcomes. [1] [2] Bernoulli schemes appear naturally in symbolic dynamics, and are thus important in the study of dynamical systems. Many important dynamical systems (such as Axiom A systems) exhibit a repellor that is the product of the Cantor set and a smooth manifold, and the dynamics on the Cantor set are isomorphic to that of the Bernoulli shift. [3] This is essentially the Markov partition. The term shift is in reference to the shift operator, which may be used to study Bernoulli schemes. The Ornstein isomorphism theorem [4] [5] shows that Bernoulli shifts are isomorphic when their entropy is equal.

Contents

Definition

A Bernoulli scheme is a discrete-time stochastic process where each independent random variable may take on one of N distinct possible values, with the outcome i occurring with probability , with i = 1, ..., N, and

The sample space is usually denoted as

as a shorthand for

The associated measure is called the Bernoulli measure [6]

The σ-algebra on X is the product sigma algebra; that is, it is the (countable) direct product of the σ-algebras of the finite set {1, ..., N}. Thus, the triplet

is a measure space. A basis of is the cylinder sets. Given a cylinder set , its measure is

The equivalent expression, using the notation of probability theory, is

for the random variables

The Bernoulli scheme, as any stochastic process, may be viewed as a dynamical system by endowing it with the shift operator T where

Since the outcomes are independent, the shift preserves the measure, and thus T is a measure-preserving transformation. The quadruplet

is a measure-preserving dynamical system, and is called a Bernoulli scheme or a Bernoulli shift. It is often denoted by

The N = 2 Bernoulli scheme is called a Bernoulli process. The Bernoulli shift can be understood as a special case of the Markov shift, where all entries in the adjacency matrix are one, the corresponding graph thus being a clique.

Matches and metrics

The Hamming distance provides a natural metric on a Bernoulli scheme. Another important metric is the so-called metric, defined via a supremum over string matches. [7]

Let and be two strings of symbols. A match is a sequence M of pairs of indexes into the string, i.e. pairs such that understood to be totally ordered. That is, each individual subsequence and are ordered: and likewise

The -distance between and is

where the supremum is being taken over all matches between and . This satisfies the triangle inequality only when and so is not quite a true metric; despite this, it is commonly called a "distance" in the literature.

Generalizations

Most of the properties of the Bernoulli scheme follow from the countable direct product, rather than from the finite base space. Thus, one may take the base space to be any standard probability space , and define the Bernoulli scheme as

This works because the countable direct product of a standard probability space is again a standard probability space.

As a further generalization, one may replace the integers by a countable discrete group , so that

For this last case, the shift operator is replaced by the group action

for group elements and understood as a function (any direct product can be understood to be the set of functions , as this is the exponential object). The measure is taken as the Haar measure, which is invariant under the group action:

These generalizations are also commonly called Bernoulli schemes, as they still share most properties with the finite case.

Properties

Ya. Sinai demonstrated that the Kolmogorov entropy of a Bernoulli scheme is given by [8] [9]

This may be seen as resulting from the general definition of the entropy of a Cartesian product of probability spaces, which follows from the asymptotic equipartition property. For the case of a general base space (i.e. a base space which is not countable), one typically considers the relative entropy. So, for example, if one has a countable partition of the base Y, such that , one may define the entropy as

In general, this entropy will depend on the partition; however, for many dynamical systems, it is the case that the symbolic dynamics is independent of the partition (or rather, there are isomorphisms connecting the symbolic dynamics of different partitions, leaving the measure invariant), and so such systems can have a well-defined entropy independent of the partition.

Ornstein isomorphism theorem

The Ornstein isomorphism theorem states that two Bernoulli schemes with the same entropy are isomorphic. [4] The result is sharp, [10] in that very similar, non-scheme systems, such as Kolmogorov automorphisms, do not have this property.

The Ornstein isomorphism theorem is in fact considerably deeper: it provides a simple criterion by which many different measure-preserving dynamical systems can be judged to be isomorphic to Bernoulli schemes. The result was surprising, as many systems previously believed to be unrelated proved to be isomorphic. These include all finite[ clarification needed ] stationary stochastic processes, subshifts of finite type, finite Markov chains, Anosov flows, and Sinai's billiards: these are all isomorphic to Bernoulli schemes.

For the generalized case, the Ornstein isomorphism theorem still holds if the group G is a countably infinite amenable group. [11] [12]

Bernoulli automorphism

An invertible, measure-preserving transformation of a standard probability space (Lebesgue space) is called a Bernoulli automorphism if it is isomorphic to a Bernoulli shift. [13]

Loosely Bernoulli

A system is termed "loosely Bernoulli" if it is Kakutani-equivalent to a Bernoulli shift; in the case of zero entropy, if it is Kakutani-equivalent to an irrational rotation of a circle.

See also

Related Research Articles

<span class="mw-page-title-main">Measure (mathematics)</span> Generalization of mass, length, area and volume

In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

<span class="mw-page-title-main">Bernoulli process</span> Random process of binary (boolean) random variables

In probability and statistics, a Bernoulli process is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variablesXi are identically distributed and independent. Prosaically, a Bernoulli process is a repeated coin flipping, possibly with an unfair coin. Every variable Xi in the sequence is associated with a Bernoulli trial or experiment. They all have the same Bernoulli distribution. Much of what can be said about the Bernoulli process can also be generalized to more than two outcomes ; this generalization is known as the Bernoulli scheme.

<span class="mw-page-title-main">Beta distribution</span> Probability distribution

In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

In information theory, the asymptotic equipartition property (AEP) is a general property of the output samples of a stochastic source. It is fundamental to the concept of typical set used in theories of data compression.

In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure. We have the following chains of inclusions for functions over a compact subset of the real line:

In mathematics, a measure-preserving dynamical system is an object of study in the abstract formulation of dynamical systems, and ergodic theory in particular. Measure-preserving systems obey the Poincaré recurrence theorem, and are a special case of conservative systems. They provide the formal, mathematical basis for a broad range of physical systems, and, in particular, many systems from classical mechanics as well as systems in thermodynamic equilibrium.

In mathematics, the ba space of an algebra of sets is the Banach space consisting of all bounded and finitely additive signed measures on . The norm is defined as the variation, that is

In functional analysis, a branch of mathematics, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute.

In measure theory, Carathéodory's extension theorem states that any pre-measure defined on a given ring of subsets R of a given set Ω can be extended to a measure on the σ-ring generated by R, and this extension is unique if the pre-measure is σ-finite. Consequently, any pre-measure on a ring containing all intervals of real numbers can be extended to the Borel algebra of the set of real numbers. This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure.

In mathematics, a π-system on a set is a collection of certain subsets of such that

In mathematics, a positive or a signed measure μ on a set X is called σ-finite if X equals the union of a sequence of measurable sets A1, A2, A3, … of finite measure μ(An) < ∞. Similarly, a subset of X is called σ-finite if it equals such a countable union. A measure being σ-finite is a weaker condition than being finite (i.e., weaker than μ(X) < ∞).

In mathematics, the Ornstein isomorphism theorem is a deep result in ergodic theory. It states that if two Bernoulli schemes have the same Kolmogorov entropy, then they are isomorphic. The result, given by Donald Ornstein in 1970, is important because it states that many systems previously believed to be unrelated are in fact isomorphic; these include all finite stationary stochastic processes, including Markov chains and subshifts of finite type, Anosov flows and Sinai's billiards, ergodic automorphisms of the n-torus, and the continued fraction transform.

In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process. Ergodicity is a property of the system; it is a statement that the system cannot be reduced or factored into smaller components. Ergodic theory is the study of systems possessing ergodicity.

In probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms.

In mathematics, especially measure theory, a set function is a function whose domain is a family of subsets of some given set and that (usually) takes its values in the extended real number line which consists of the real numbers and

In mathematics, lifting theory was first introduced by John von Neumann in a pioneering paper from 1931, in which he answered a question raised by Alfréd Haar. The theory was further developed by Dorothy Maharam (1958) and by Alexandra Ionescu Tulcea and Cassius Ionescu Tulcea (1961). Lifting theory was motivated to a large extent by its striking applications. Its development up to 1969 was described in a monograph of the Ionescu Tulceas. Lifting theory continued to develop since then, yielding new results and applications.

In mathematics, a Kolmogorov automorphism, K-automorphism, K-shift or K-system is an invertible, measure-preserving automorphism defined on a standard probability space that obeys Kolmogorov's zero–one law. All Bernoulli automorphisms are K-automorphisms, but not vice versa. Many ergodic dynamical systems have been shown to have the K-property, although more recent research has shown that many of these are in fact Bernoulli automorphisms.

In mathematics, the Rokhlin lemma, or Kakutani–Rokhlin lemma is an important result in ergodic theory. It states that an aperiodic measure preserving dynamical system can be decomposed to an arbitrary high tower of measurable sets and a remainder of arbitrarily small measure. It was proven by Vladimir Abramovich Rokhlin and independently by Shizuo Kakutani. The lemma is used extensively in ergodic theory, for example in Ornstein theory and has many generalizations.

In mathematics, the Poisson boundary is a probability space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary, which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

References

  1. P. Shields, The theory of Bernoulli shifts, Univ. Chicago Press (1973)
  2. Michael S. Keane, "Ergodic theory and subshifts of finite type", (1991), appearing as Chapter 2 in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Tim Bedford, Michael Keane and Caroline Series, Eds. Oxford University Press, Oxford (1991). ISBN   0-19-853390-X
  3. Pierre Gaspard, Chaos, scattering and statistical mechanics (1998), Cambridge University press
  4. 1 2 Ornstein, Donald (1970). "Bernoulli shifts with the same entropy are isomorphic". Advances in Mathematics . 4 (3): 337–352. doi: 10.1016/0001-8708(70)90029-0 .
  5. D.S. Ornstein (2001) [1994], "Ornstein isomorphism theorem", Encyclopedia of Mathematics , EMS Press
  6. Klenke, Achim (2006). Probability Theory. Springer-Verlag. ISBN   978-1-84800-047-6.
  7. Feldman, Jacob (1976). "New -automorphisms and a problem of Kakutani". Israel Journal of Mathematics . 24 (1): 16–38. doi: 10.1007/BF02761426 .
  8. Ya.G. Sinai, (1959) "On the Notion of Entropy of a Dynamical System", Doklady of Russian Academy of Sciences124, pp. 768–771.
  9. Ya. G. Sinai, (2007) "Metric Entropy of Dynamical System"
  10. Hoffman, Christopher (1999). "A Counterexample Machine". Transactions of the American Mathematical Society. 351 (10): 4263–4280. doi:10.1090/S0002-9947-99-02446-0.
  11. Ornstein, Donald S.; Weiss, Benjamin (1987). "Entropy and isomorphism theorems for actions of amenable groups". Journal d'Analyse Mathématique . 48: 1–141. doi: 10.1007/BF02790325 .
  12. Bowen, Lewis (2012). "Every countably infinite group is almost Ornstein". Contemporary Mathematics. 567: 67–78. arXiv: 1103.4424 . doi:10.1090/conm/567/11234. ISBN   978-0-8218-6922-2.
  13. Peter Walters (1982) An Introduction to Ergodic Theory, Springer-Verlag, ISBN   0-387-90599-5