Direct product

Last updated

In mathematics, one can often define a direct product of objects already known, giving a new one. This induces a structure on the Cartesian product of the underlying sets from that of the contributing objects. More abstractly, one talks about the product in category theory, which formalizes these notions.

Contents

Examples are the product of sets, groups (described below), rings, and other algebraic structures. The product of topological spaces is another instance.[ dubious ]

There is also the direct sum – in some areas this is used interchangeably, while in others it is a different concept.

Examples

In a similar manner, we can talk about the direct product of finitely many algebraic structures, for example, This relies on the direct product being associative up to isomorphism. That is, for any algebraic structures and of the same kind. The direct product is also commutative up to isomorphism, that is, for any algebraic structures and of the same kind. We can even talk about the direct product of infinitely many algebraic structures; for example we can take the direct product of countably many copies of which we write as

Direct product of groups

In group theory one can define the direct product of two groups and denoted by For abelian groups that are written additively, it may also be called the direct sum of two groups, denoted by

It is defined as follows:

Note that may be the same as

This construction gives a new group. It has a normal subgroup isomorphic to (given by the elements of the form ), and one isomorphic to (comprising the elements ).

The reverse also holds. There is the following recognition theorem: If a group contains two normal subgroups such that and the intersection of contains only the identity, then is isomorphic to A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.

As an example, take as two copies of the unique (up to isomorphisms) group of order 2, say Then with the operation element by element. For instance, and

With a direct product, we get some natural group homomorphisms for free: the projection maps defined by

are called the coordinate functions.

Also, every homomorphism to the direct product is totally determined by its component functions

For any group and any integer repeated application of the direct product gives the group of all -tuples (for this is the trivial group), for example and

Direct product of modules

The direct product for modules (not to be confused with the tensor product) is very similar to the one defined for groups above, using the Cartesian product with the operation of addition being componentwise, and the scalar multiplication just distributing over all the components. Starting from we get Euclidean space the prototypical example of a real -dimensional vector space. The direct product of and is

Note that a direct product for a finite index is canonically isomorphic to the direct sum The direct sum and direct product are not isomorphic for infinite indices, where the elements of a direct sum are zero for all but for a finite number of entries. They are dual in the sense of category theory: the direct sum is the coproduct, while the direct product is the product.

For example, consider and the infinite direct product and direct sum of the real numbers. Only sequences with a finite number of non-zero elements are in For example, is in but is not. Both of these sequences are in the direct product in fact, is a proper subset of (that is, ). [1] [2]

Topological space direct product

The direct product for a collection of topological spaces for in some index set, once again makes use of the Cartesian product

Defining the topology is a little tricky. For finitely many factors, this is the obvious and natural thing to do: simply take as a basis of open sets to be the collection of all Cartesian products of open subsets from each factor:

This topology is called the product topology. For example, directly defining the product topology on by the open sets of (disjoint unions of open intervals), the basis for this topology would consist of all disjoint unions of open rectangles in the plane (as it turns out, it coincides with the usual metric topology).

The product topology for infinite products has a twist, and this has to do with being able to make all the projection maps continuous and to make all functions into the product continuous if and only if all its component functions are continuous (that is, to satisfy the categorical definition of product: the morphisms here are continuous functions): we take as a basis of open sets to be the collection of all Cartesian products of open subsets from each factor, as before, with the proviso that all but finitely many of the open subsets are the entire factor:

The more natural-sounding topology would be, in this case, to take products of infinitely many open subsets as before, and this does yield a somewhat interesting topology, the box topology. However it is not too difficult to find an example of bunch of continuous component functions whose product function is not continuous (see the separate entry box topology for an example and more). The problem that makes the twist necessary is ultimately rooted in the fact that the intersection of open sets is only guaranteed to be open for finitely many sets in the definition of topology.

Products (with the product topology) are nice with respect to preserving properties of their factors; for example, the product of Hausdorff spaces is Hausdorff; the product of connected spaces is connected, and the product of compact spaces is compact. That last one, called Tychonoff's theorem, is yet another equivalence to the axiom of choice.

For more properties and equivalent formulations, see the separate entry product topology.

Direct product of binary relations

On the Cartesian product of two sets with binary relations define as If are both reflexive, irreflexive, transitive, symmetric, or antisymmetric, then will be also. [3] Similarly, totality of is inherited from Combining properties it follows that this also applies for being a preorder and being an equivalence relation. However, if are connected relations, need not be connected; for example, the direct product of on with itself does not relate

Direct product in universal algebra

If is a fixed signature, is an arbitrary (possibly infinite) index set, and is an indexed family of algebras, the direct product is a algebra defined as follows:

For each the th projection is defined by It is a surjective homomorphism between the algebras [4]

As a special case, if the index set the direct product of two algebras is obtained, written as If just contains one binary operation the above definition of the direct product of groups is obtained, using the notation Similarly, the definition of the direct product of modules is subsumed here.

Categorical product

The direct product can be abstracted to an arbitrary category. In a category, given a collection of objects indexed by a set , a product of these objects is an object together with morphisms for all , such that if is any other object with morphisms for all , there exists a unique morphism whose composition with equals for every . Such and do not always exist. If they do exist, then is unique up to isomorphism, and is denoted .

In the special case of the category of groups, a product always exists: the underlying set of is the Cartesian product of the underlying sets of the , the group operation is componentwise multiplication, and the (homo)morphism is the projection sending each tuple to its th coordinate.

Internal and external direct product

Some authors draw a distinction between an internal direct product and an external direct product. If and then we say that is an internal direct product of while if are not subobjects then we say that this is an external direct product.

See also

Notes

  1. Weisstein, Eric W. "Direct Product". mathworld.wolfram.com. Retrieved 2018-02-10.
  2. Weisstein, Eric W. "Group Direct Product". mathworld.wolfram.com. Retrieved 2018-02-10.
  3. "Equivalence and Order" (PDF).
  4. Stanley N. Burris and H.P. Sankappanavar, 1981. A Course in Universal Algebra. Springer-Verlag. ISBN   3-540-90578-2. Here: Def. 7.8, p. 53 (p. 67 in PDF)

Related Research Articles

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

In mathematics, especially in category theory and homotopy theory, a groupoid generalises the notion of group in several equivalent ways. A groupoid can be seen as a:

In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codomain of this function is usually some topological space.

In mathematics, a product is the result of multiplication, or an expression that identifies objects to be multiplied, called factors. For example, 21 is the product of 3 and 7, and is the product of and . When one factor is an integer, the product is called a multiple.

<span class="mw-page-title-main">Ring (mathematics)</span> Algebraic structure with addition and multiplication

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.

In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for expressing all mathematics.

In category theory, the product of two objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces. Essentially, the product of a family of objects is the "most general" object which admits a morphism to each of the given objects.

In mathematics, a sheaf is a tool for systematically tracking data attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data are well behaved in that they can be restricted to smaller open sets, and also the data assigned to an open set are equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set.

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups and is another abelian group consisting of the ordered pairs where and . To add ordered pairs, we define the sum to be ; in other words addition is defined coordinate-wise. For example, the direct sum , where is real coordinate space, is the Cartesian plane, . A similar process can be used to form the direct sum of two vector spaces or two modules.

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory.

This is a glossary of properties and concepts in category theory in mathematics.

<span class="mw-page-title-main">Three-dimensional space</span> Geometric model of the physical space

In geometry, a three-dimensional space is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space. More general three-dimensional spaces are called 3-manifolds. The term may also refer colloquially to a subset of space, a three-dimensional region, a solid figure.

<span class="mw-page-title-main">Cartesian product</span> Mathematical set formed from two given sets

In mathematics, specifically set theory, the Cartesian product of two sets A and B, denoted A × B, is the set of all ordered pairs (a, b) where a is in A and b is in B. In terms of set-builder notation, that is

In mathematics, a profinite integer is an element of the ring

References