Direct sum of groups

Last updated

In mathematics, a group G is called the direct sum [1] [2] of two normal subgroups with trivial intersection if it is generated by the subgroups. In abstract algebra, this method of construction of groups can be generalized to direct sums of vector spaces, modules, and other structures; see the article direct sum of modules for more information. A group which can be expressed as a direct sum of non-trivial subgroups is called decomposable, and if a group cannot be expressed as such a direct sum then it is called indecomposable.

Contents

Definition

A group G is called the direct sum [1] [2] of two subgroups H1 and H2 if

More generally, G is called the direct sum of a finite set of subgroups {Hi} if

If G is the direct sum of subgroups H and K then we write G = H + K, and if G is the direct sum of a set of subgroups {Hi} then we often write G = ΣHi. Loosely speaking, a direct sum is isomorphic to a weak direct product of subgroups.

Properties

If G = H + K, then it can be proven that:

The above assertions can be generalized to the case of G = ΣHi, where {Hi} is a finite set of subgroups:

g = h1h2 ∗ ... ∗ hi ∗ ... ∗ hn

Note the similarity with the direct product, where each g can be expressed uniquely as

g = (h1,h2, ..., hi, ..., hn).

Since hihj = hjhi for all ij, it follows that multiplication of elements in a direct sum is isomorphic to multiplication of the corresponding elements in the direct product; thus for finite sets of subgroups, ΣHi is isomorphic to the direct product ×{Hi}.

Direct summand

Given a group , we say that a subgroup is a direct summand of if there exists another subgroup of such that .

In abelian groups, if is a divisible subgroup of , then is a direct summand of .

Examples

Equivalence of decompositions into direct sums

In the decomposition of a finite group into a direct sum of indecomposable subgroups the embedding of the subgroups is not unique. For example, in the Klein group we have that

and

However, the Remak-Krull-Schmidt theorem states that given a finite group G = ΣAi = ΣBj, where each Ai and each Bj is non-trivial and indecomposable, the two sums have equal terms up to reordering and isomorphism.

The Remak-Krull-Schmidt theorem fails for infinite groups; so in the case of infinite G = H + K = L + M, even when all subgroups are non-trivial and indecomposable, we cannot conclude that H is isomorphic to either L or M.

Generalization to sums over infinite sets

To describe the above properties in the case where G is the direct sum of an infinite (perhaps uncountable) set of subgroups, more care is needed.

If g is an element of the cartesian product Π{Hi} of a set of groups, let gi be the ith element of g in the product. The external direct sum of a set of groups {Hi} (written as ΣE{Hi}) is the subset of Π{Hi}, where, for each element g of ΣE{Hi}, gi is the identity for all but a finite number of gi (equivalently, only a finite number of gi are not the identity). The group operation in the external direct sum is pointwise multiplication, as in the usual direct product.

This subset does indeed form a group, and for a finite set of groups {Hi} the external direct sum is equal to the direct product.

If G = ΣHi, then G is isomorphic to ΣE{Hi}. Thus, in a sense, the direct sum is an "internal" external direct sum. For each element g in G, there is a unique finite set S and a unique set {hiHi : iS} such that g = Π {hi : i in S}.

See also

Related Research Articles

<span class="texhtml mvar" style="font-style:italic;">p</span>-group

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

Semidirect product Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

Cyclic group Mathematical group that can be generated as the set of powers of a single element

In group theory, a branch of abstract algebra, a cyclic group or monogenous group is a group that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as a power of g in multiplicative notation, or as a multiple of g in additive notation. This element g is called a generator of the group.

In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation

In mathematics, the rank, Prüfer rank, or torsion-free rank of an abelian group A is the cardinality of a maximal linearly independent subset. The rank of A determines the size of the largest free abelian group contained in A. If A is torsion-free then it embeds into a vector space over the rational numbers of dimension rank A. For finitely generated abelian groups, rank is a strong invariant and every such group is determined up to isomorphism by its rank and torsion subgroup. Torsion-free abelian groups of rank 1 have been completely classified. However, the theory of abelian groups of higher rank is more involved.

In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free -modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.

Glossary of group theory

A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.

In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring.

In mathematics, specifically group theory, the free product is an operation that takes two groups G and H and constructs a new group GH. The result contains both G and H as subgroups, is generated by the elements of these subgroups, and is the “universal” group having these properties, in the sense that any two homomorphisms from G and H into a group K factor uniquely through a homomorphism from GH to K. Unless one of the groups G and H is trivial, the free product is always infinite. The construction of a free product is similar in spirit to the construction of a free group.

Order (group theory)

In group theory, a branch of mathematics, the order of a group is its cardinality, that is, the number of elements in its set. If the group is seen multiplicatively, the order of an elementa of a group, sometimes also called the period length or period of a, is the smallest positive integer m such that am = e, where e denotes the identity element of the group, and am denotes the product of m copies of a. If no such m exists, a is said to have infinite order.

Frattini subgroup

In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or the Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements". It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

In mathematics, the HNN extension is an important construction of combinatorial group theory.

Direct product of groups

In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.

Prüfer group

In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p-group, Z(p), for a prime number p is the unique p-group in which every element has p different p-th roots.

In mathematics, the Burnside ring of a finite group is an algebraic construction that encodes the different ways the group can act on finite sets. The ideas were introduced by William Burnside at the end of the nineteenth century. The algebraic ring structure is a more recent development, due to Solomon (1967).

In the mathematical subject of group theory, the rank of a groupG, denoted rank(G), can refer to the smallest cardinality of a generating set for G, that is

In mathematics, the Krull–Schmidt theorem states that a group subjected to certain finiteness conditions on chains of subgroups, can be uniquely written as a finite direct product of indecomposable subgroups.

In mathematics, or more specifically group theory, the omega and agemo subgroups described the so-called "power structure" of a finite p-group. They were introduced in where they were used to describe a class of finite p-groups whose structure was sufficiently similar to that of finite abelian p-groups, the so-called, regular p-groups. The relationship between power and commutator structure forms a central theme in the modern study of p-groups, as exemplified in the work on uniformly powerful p-groups.

References

  1. 1 2 Homology. Saunders MacLane. Springer, Berlin; Academic Press, New York, 1963.
  2. 1 2 László Fuchs. Infinite Abelian Groups