Frobenius group

Last updated • 6 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

Contents

Structure

Suppose G is a Frobenius group consisting of permutations of a set X. A subgroup H of G fixing a point of X is called a Frobenius complement. The identity element together with all elements not in any conjugate of H form a normal subgroup called the Frobenius kernelK. (This is a theorem due to Frobenius (1901); there is still no proof of this theorem that does not use character theory, although see [1] .) The Frobenius group G is the semidirect product of K and H:

.

Both the Frobenius kernel and the Frobenius complement have very restricted structures. J. G.Thompson  ( 1960 ) proved that the Frobenius kernel K is a nilpotent group. If H has even order then K is abelian. The Frobenius complement H has the property that every subgroup whose order is the product of 2 primes is cyclic; this implies that its Sylow subgroups are cyclic or generalized quaternion groups. Any group such that all Sylow subgroups are cyclic is called a Z-group, and in particular must be a metacyclic group: this means it is the extension of two cyclic groups. If a Frobenius complement H is not solvable then Zassenhaus showed that it has a normal subgroup of index 1 or 2 that is the product of SL(2,5) and a metacyclic group of order coprime to 30. In particular, if a Frobenius complement coincides with its derived subgroup, then it is isomorphic with SL(2,5). If a Frobenius complement H is solvable then it has a normal metacyclic subgroup such that the quotient is a subgroup of the symmetric group on 4 points. A finite group is a Frobenius complement if and only if it has a faithful, finite-dimensional representation over a finite field in which non-identity group elements correspond to linear transformations without nonzero fixed points.

The Frobenius kernel K is uniquely determined by G as it is the Fitting subgroup, and the Frobenius complement is uniquely determined up to conjugacy by the Schur-Zassenhaus theorem. In particular a finite group G is a Frobenius group in at most one way.

Examples

The Fano plane Fano plane.svg
The Fano plane

Representation theory

The irreducible complex representations of a Frobenius group G can be read off from those of H and K. There are two types of irreducible representations of G:

Alternative definitions

There are a number of group theoretical properties which are interesting on their own right, but which happen to be equivalent to the group possessing a permutation representation that makes it a Frobenius group.

This definition is then generalized to the study of trivial intersection sets which allowed the results on Frobenius groups used in the classification of CA groups to be extended to the results on CN groups and finally the odd order theorem.

Assuming that is the semidirect product of the normal subgroup K and complement H, then the following restrictions on centralizers are equivalent to G being a Frobenius group with Frobenius complement H:

Related Research Articles

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:

<span class="mw-page-title-main">Sylow theorems</span> Theorems that help decompose a finite group based on prime factors of its order

In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups.

<span class="mw-page-title-main">Solvable group</span> Group that can be constructed from abelian groups using extensions

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

In mathematics, the Feit–Thompson theorem, or odd order theorem, states that every finite group of odd order is solvable. It was proved by Walter Feit and John Griggs Thompson.

<span class="mw-page-title-main">Hall subgroup</span>

In mathematics, specifically group theory, a Hall subgroup of a finite group G is a subgroup whose order is coprime to its index. They were introduced by the group theorist Philip Hall (1928).

<span class="mw-page-title-main">Burnside's theorem</span> Mathematic group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

The Schur–Zassenhaus theorem is a theorem in group theory which states that if is a finite group, and is a normal subgroup whose order is coprime to the order of the quotient group , then is a semidirect product of and . An alternative statement of the theorem is that any normal Hall subgroup of a finite group has a complement in . Moreover if either or is solvable then the Schur–Zassenhaus theorem also states that all complements of in are conjugate. The assumption that either or is solvable can be dropped as it is always satisfied, but all known proofs of this require the use of the much harder Feit–Thompson theorem.

In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In mathematical group theory, a normal p-complement of a finite group for a prime p is a normal subgroup of order coprime to p and index a power of p. In other words the group is a semidirect product of the normal p-complement and any Sylow p-subgroup. A group is called p-nilpotent if it has a normal p-complement.

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

In the area of modern algebra known as group theory, the Suzuki groups, denoted by Sz(22n+1), 2B2(22n+1), Suz(22n+1), or G(22n+1), form an infinite family of groups of Lie type found by Suzuki (1960), that are simple for n ≥ 1. These simple groups are the only finite non-abelian ones with orders not divisible by 3.

In mathematical representation theory, coherence is a property of sets of characters that allows one to extend an isometry from the degree-zero subspace of a space of characters to the whole space. The general notion of coherence was developed by Feit, as a generalization of the proof by Frobenius of the existence of a Frobenius kernel of a Frobenius group and of the work of Brauer and Suzuki on exceptional characters. Feit & Thompson developed coherence further in the proof of the Feit–Thompson theorem that all groups of odd order are solvable.

References