Fitting subgroup

Last updated

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

Contents

For an arbitrary (not necessarily finite) group G, the Fitting subgroup is defined to be the subgroup generated by the nilpotent normal subgroups of G. For infinite groups, the Fitting subgroup is not always nilpotent.

The remainder of this article deals exclusively with finite groups.

The Fitting subgroup

The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of G is again a normal nilpotent subgroup. It may also be explicitly constructed as the product of the p-cores of G over all of the primes p dividing the order of G.

If G is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if G≠1 is finite solvable, then F(G)≠1. Similarly the Fitting subgroup of G/F(G) will be nontrivial if G is not itself nilpotent, giving rise to the concept of Fitting length. Since the Fitting subgroup of a finite solvable group contains its own centralizer, this gives a method of understanding finite solvable groups as extensions of nilpotent groups by faithful automorphism groups of nilpotent groups.

In a nilpotent group, every chief factor is centralized by every element. Relaxing the condition somewhat, and taking the subgroup of elements of a general finite group which centralize every chief factor, one simply gets the Fitting subgroup again ( Huppert 1967 , Kap.VI, Satz 5.4, p.686):

The generalization to p-nilpotent groups is similar.

The generalized Fitting subgroup

A component of a group is a subnormal quasisimple subgroup. (A group is quasisimple if it is a perfect central extension of a simple group.) The layerE(G) or L(G) of a group is the subgroup generated by all components. Any two components of a group commute, so the layer is a perfect central extension of a product of simple groups, and is the largest normal subgroup of G with this structure. The generalized Fitting subgroup F*(G) is the subgroup generated by the layer and the Fitting subgroup. The layer commutes with the Fitting subgroup, so the generalized Fitting subgroup is a central extension of a product of p-groups and simple groups.

The layer is also the maximal normal semisimple subgroup, where a group is called semisimple if it is a perfect central extension of a product of simple groups.

This definition of the generalized Fitting subgroup can be motivated by some of its intended uses. Consider the problem of trying to identify a normal subgroup H of G that contains its own centralizer and the Fitting group. If C is the centralizer of H we want to prove that C is contained in H. If not, pick a minimal characteristic subgroup M/Z(H) of C/Z(H), where Z(H) is the center of H, which is the same as the intersection of C and H. Then M/Z(H) is a product of simple or cyclic groups as it is characteristically simple. If M/Z(H) is a product of cyclic groups then M must be in the Fitting subgroup. If M/Z(H) is a product of non-abelian simple groups then the derived subgroup of M is a normal semisimple subgroup mapping onto M/Z(H). So if H contains the Fitting subgroup and all normal semisimple subgroups, then M/Z(H) must be trivial, so H contains its own centralizer. The generalized Fitting subgroup is the smallest subgroup that contains the Fitting subgroup and all normal semisimple subgroups.

The generalized Fitting subgroup can also be viewed as a generalized centralizer of chief factors. A nonabelian semisimple group cannot centralize itself, but it does act one itself as inner automorphisms. A group is said to be quasi-nilpotent if every element acts as an inner automorphism on every chief factor. The generalized Fitting subgroup is the unique largest subnormal quasi-nilpotent subgroup, and is equal to the set of all elements which act as inner automorphisms on every chief factor of the whole group ( Huppert & Blackburn 1982 , Chapter X, Theorem 5.4, p. 126):

Here an element g is in HCG(H/K) if and only if there is some h in H such that for every x in H, xgxh mod K.

Properties

If G is a finite solvable group, then the Fitting subgroup contains its own centralizer. The centralizer of the Fitting subgroup is the center of the Fitting subgroup. In this case, the generalized Fitting subgroup is equal to the Fitting subgroup. More generally, if G is a finite group, then the generalized Fitting subgroup contains its own centralizer. This means that in some sense the generalized Fitting subgroup controls G, because G modulo the centralizer of F*(G) is contained in the automorphism group of F*(G), and the centralizer of F*(G) is contained in F*(G). In particular there are only a finite number of groups with given generalized Fitting subgroup.

Applications

The normalizers of nontrivial p-subgroups of a finite group are called the p-local subgroups and exert a great deal of control over the structure of the group (allowing what is called local analysis). A finite group is said to be of characteristic p type if F*(G) is a p-group for every p-local subgroup, because any group of Lie type defined over a field of characteristic p has this property. In the classification of finite simple groups, this allows one to guess over which field a simple group should be defined. Note that a few groups are of characteristic p type for more than one p.

If a simple group is not of Lie type over a field of given characteristic p, then the p-local subgroups usually have components in the generalized Fitting subgroup, though there are many exceptions for groups that have small rank, are defined over small fields, or are sporadic. This is used to classify the finite simple groups, because if a p-local subgroup has a known component, it is often possible to identify the whole group ( Aschbacher & Seitz 1976 ).

The analysis of finite simple groups by means of the structure and embedding of the generalized Fitting subgroups of their maximal subgroups was originated by Helmut Bender ( Bender 1970 ) and has come to be known as Bender's method. It is especially effective in the exceptional cases where components or signalizer functors are not applicable.

Related Research Articles

In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.

Classification of finite simple groups Massive theorem assigning all but 27 finite simple groups to a few infinite families

In mathematics, the classification of the finite simple groups is a theorem stating that every finite simple group is either cyclic, or alternating, or it belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six or twenty-seven exceptions, called sporadic. Group theory is central to many areas of pure and applied mathematics and the classification theorem has been called one of the great intellectual achievements of humanity. The proof consists of tens of thousands of pages in several hundred journal articles written by about 100 authors, published mostly between 1955 and 2004.

Symmetric group automorphism group of a set; the group of bijections on a set, whose group operation is function composition

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group Sn defined over a finite set of n symbols consists of the permutation operations that can be performed on the n symbols. Since there are n! such permutation operations, the order of the symmetric group Sn is n!.

Solvable group group that can be constructed from abelian groups using extensions; a group whose derived series terminates in the trivial subgroup

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

Nilpotent group

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, its central series is of finite length or its lower central series terminates with {1}.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

Linear algebraic group subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible n×n matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation MTM = 1 where MT is the transpose of M.

In group theory, a branch of mathematics, a core is any of certain special normal subgroups of a group. The two most common types are the normal core of a subgroup and the p-core of a group.

Reductive group linear algebraic group over a field such that, after base change to its algebraic closure, every smooth connected solvable normal subgroup is trivial

In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group G over a perfect field is reductive if it has a representation with finite kernel which is a direct sum of irreducible representations. Reductive groups include some of the most important groups in mathematics, such as the general linear group GL(n) of invertible matrices, the special orthogonal group SO(n), and the symplectic group Sp(2n). Simple algebraic groups and semisimple algebraic groups are reductive.

Cartan subalgebra Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis.

In mathematics, a quasisimple group is a group that is a perfect central extension E of a simple group S. In other words, there is a short exact sequence

Frobenius group transitive permutation group with restrictions on fixed point behavior

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, in the field of group theory, a component of a finite group is a quasisimple subnormal subgroup. Any two distinct components commute. The product of all the components is the layer of the group.

In mathematics, especially in the area of algebra known as group theory, the Fitting length measures how far a solvable group is from being nilpotent. The concept is named after Hans Fitting, due to his investigations of nilpotent normal subgroups.

Lattice (discrete subgroup) discrete subgroup in a locally compact topological group

In Lie theory and related areas of mathematics, a lattice in a locally compact group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of Rn, this amounts to the usual geometric notion of a lattice as a periodic subset of points, and both the algebraic structure of lattices and the geometry of the space of all lattices are relatively well understood.

Borel–de Siebenthal theory theory describing maximal-rank compact subgroups of Lie groups

In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.

Complexification (Lie group) universal construction of a complex Lie group from a real Lie group

In mathematics, the complexification or universal complexification of a real Lie group is given by a continuous homomorphism of the group into a complex Lie group with the universal property that every continuous homomorphism of the original group into another complex Lie group extends compatibly to a complex analytic homomorphism between the complex Lie groups. The complexification, which always exists, is unique up to unique isomorphism. Its Lie algebra is a quotient of the complexification of the Lie algebra of the original group. They are isomorphic if the original group has a quotient by a discrete normal subgroup which is linear.

Glossary of Lie groups and Lie algebras Wikipedia glossary

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References