Nilpotent group

Last updated

In mathematics, specifically group theory, a nilpotent groupG is a group that has an upper central series that terminates with G. Equivalently, it has a central series of finite length or its lower central series terminates with {1}.

Contents

Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. [1]

Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups.

Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent , lower central series, and upper central series.

Definition

The definition uses the idea of a central series for a group. The following are equivalent definitions for a nilpotent group G:

For a nilpotent group, the smallest n such that G has a central series of length n is called the nilpotency class of G; and G is said to be nilpotent of class n. (By definition, the length is n if there are different subgroups in the series, including the trivial subgroup and the whole group.)

Equivalently, the nilpotency class of G equals the length of the lower central series or upper central series. If a group has nilpotency class at most n, then it is sometimes called a nil-n group.

It follows immediately from any of the above forms of the definition of nilpotency, that the trivial group is the unique group of nilpotency class 0, and groups of nilpotency class 1 are exactly the non-trivial abelian groups. [2] [3]

Examples

A portion of the Cayley graph of the discrete Heisenberg group, a well-known nilpotent group. HeisenbergCayleyGraph.png
A portion of the Cayley graph of the discrete Heisenberg group, a well-known nilpotent group.

The natural numbers k for which any group of order k is nilpotent have been characterized (sequence A056867 in the OEIS ).

Explanation of term

Nilpotent groups are called so because the "adjoint action" of any element is nilpotent, meaning that for a nilpotent group of nilpotence degree and an element , the function defined by (where is the commutator of and ) is nilpotent in the sense that the th iteration of the function is trivial: for all in .

This is not a defining characteristic of nilpotent groups: groups for which is nilpotent of degree (in the sense above) are called -Engel groups, [8] and need not be nilpotent in general. They are proven to be nilpotent if they have finite order, and are conjectured to be nilpotent as long as they are finitely generated.

An abelian group is precisely one for which the adjoint action is not just nilpotent but trivial (a 1-Engel group).

Properties

Since each successive factor group Zi+1/Zi in the upper central series is abelian, and the series is finite, every nilpotent group is a solvable group with a relatively simple structure.

Every subgroup of a nilpotent group of class n is nilpotent of class at most n; [9] in addition, if f is a homomorphism of a nilpotent group of class n, then the image of f is nilpotent [9] of class at most n.

The following statements are equivalent for finite groups, [10] revealing some useful properties of nilpotency:

  1. G is a nilpotent group.
  2. If H is a proper subgroup of G, then H is a proper normal subgroup of NG(H) (the normalizer of H in G). This is called the normalizer property and can be phrased simply as "normalizers grow".
  3. Every Sylow subgroup of G is normal.
  4. G is the direct product of its Sylow subgroups.
  5. If d divides the order of G, then G has a normal subgroup of order d.

Proof:

(a)→(b)
By induction on |G|. If G is abelian, then for any H, NG(H) = G. If not, if Z(G) is not contained in H, then hZHZ−1h−1 = h'H'h−1 = H, so H·Z(G) normalizers H. If Z(G) is contained in H, then H/Z(G) is contained in G/Z(G). Note, G/Z(G) is a nilpotent group. Thus, there exists a subgroup of G/Z(G) which normalizes H/Z(G) and H/Z(G) is a proper subgroup of it. Therefore, pullback this subgroup to the subgroup in G and it normalizes H. (This proof is the same argument as for p-groups the only fact we needed was if G is nilpotent then so is G/Z(G) so the details are omitted.)
(b)→(c)
Let p1,p2,...,ps be the distinct primes dividing its order and let Pi in Sylpi(G), 1 ≤ is. Let P = Pi for some i and let N = NG(P). Since P is a normal Sylow subgroup of N, P is characteristic in N. Since P char N and N is a normal subgroup of NG(N), we get that P is a normal subgroup of NG(N). This means NG(N) is a subgroup of N and hence NG(N) = N. By (b) we must therefore have N = G, which gives (c).
(c)→(d)
Let p1,p2,...,ps be the distinct primes dividing its order and let Pi in Sylpi(G), 1 ≤ is. For any t, 1 ≤ ts we show inductively that P1P2···Pt is isomorphic to P1×P2×···×Pt.
Note first that each Pi is normal in G so P1P2···Pt is a subgroup of G. Let H be the product P1P2···Pt−1 and let K = Pt, so by induction H is isomorphic to P1×P2×···×Pt−1. In particular,|H| = |P1||P2|···|Pt−1|. Since |K| = |Pt|, the orders of H and K are relatively prime. Lagrange's Theorem implies the intersection of H and K is equal to 1. By definition,P1P2···Pt = HK, hence HK is isomorphic to H×K which is equal to P1×P2×···×Pt. This completes the induction. Now take t = s to obtain (d).
(d)→(e)
Note that a p-group of order pk has a normal subgroup of order pm for all 1≤mk. Since G is a direct product of its Sylow subgroups, and normality is preserved upon direct product of groups, G has a normal subgroup of order d for every divisor d of |G|.
(e)→(a)
For any prime p dividing |G|, the Sylow p-subgroup is normal. Thus we can apply (c) (since we already proved (c)→(e)).

Statement (d) can be extended to infinite groups: if G is a nilpotent group, then every Sylow subgroup Gp of G is normal, and the direct product of these Sylow subgroups is the subgroup of all elements of finite order in G (see torsion subgroup).

Many properties of nilpotent groups are shared by hypercentral groups.

Notes

  1. Dixon, M. R.; Kirichenko, V. V.; Kurdachenko, L. A.; Otal, J.; Semko, N. N.; Shemetkov, L. A.; Subbotin, I. Ya. (2012). "S. N. Chernikov and the development of infinite group theory". Algebra and Discrete Mathematics. 13 (2): 169–208.
  2. 1 2 Suprunenko (1976). Matrix Groups. p. 205.
  3. Tabachnikova & Smith (2000). Topics in Group Theory (Springer Undergraduate Mathematics Series). p. 169.
  4. Hungerford (1974). Algebra. p. 100.
  5. 1 2 Zassenhaus (1999). The theory of groups. p. 143.
  6. Haeseler (2002). Automatic Sequences (De Gruyter Expositions in Mathematics, 36). p. 15.
  7. Palmer (2001). Banach algebras and the general theory of *-algebras. p. 1283.
  8. For the term, compare Engel's theorem, also on nilpotency.
  9. 1 2 Bechtell (1971), p. 51, Theorem 5.1.3
  10. Isaacs (2008), Thm. 1.26

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after Niels Henrik Abel.

In abstract algebra, the center of a group G is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation,

In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.

<span class="texhtml mvar" style="font-style:italic;">p</span>-group Group in which the order of every element is a power of p

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Solvable group</span> Group with subnormal series where all factors are abelian

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

In abstract algebra, a composition series provides a way to break up an algebraic structure, such as a group or a module, into simple pieces. The need for considering composition series in the context of modules arises from the fact that many naturally occurring modules are not semisimple, hence cannot be decomposed into a direct sum of simple modules. A composition series of a module M is a finite increasing filtration of M by submodules such that the successive quotients are simple and serves as a replacement of the direct sum decomposition of M into its simple constituents.

In mathematics, especially in the area of algebra known as group theory, the Fitting subgroupF of a finite group G, named after Hans Fitting, is the unique largest normal nilpotent subgroup of G. Intuitively, it represents the smallest subgroup which "controls" the structure of G when G is solvable. When G is not solvable, a similar role is played by the generalized Fitting subgroupF*, which is generated by the Fitting subgroup and the components of G.

In mathematics, specifically group theory, a subgroup series of a group is a chain of subgroups:

<span class="mw-page-title-main">Frobenius group</span>

In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.

In mathematics, a unipotent elementr of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

<span class="mw-page-title-main">Burnside's theorem</span> Mathematics, group theory

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

<span class="mw-page-title-main">Cauchy's theorem (group theory)</span> Existence of group elements of prime order

In mathematics, specifically group theory, Cauchy's theorem states that if G is a finite group and p is a prime number dividing the order of G, then G contains an element of order p. That is, there is x in G such that p is the smallest positive integer with xp = e, where e is the identity element of G. It is named after Augustin-Louis Cauchy, who discovered it in 1845.

<span class="mw-page-title-main">Nilpotent Lie algebra</span>

In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras

In mathematics, a group is supersolvable if it has an invariant normal series where all the factors are cyclic groups. Supersolvability is stronger than the notion of solvability.

In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings, it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal.

In mathematics, especially in the area of algebra known as group theory, the term Z-group refers to a number of distinct types of groups:

In abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to. The focal subgroup theorem relates the ideas of transfer and fusion such as described by Otto Grün in. Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References