This article includes a list of general references, but it lacks sufficient corresponding inline citations .(January 2008) |
Algebraic structure → Group theory Group theory |
---|
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n).
For n > 1, the group An is the commutator subgroup of the symmetric group Sn with index 2 and has therefore n!/2 elements. It is the kernel of the signature group homomorphism sgn : Sn → {1, −1} explained under symmetric group.
The group An is abelian if and only if n ≤ 3 and simple if and only if n = 3 or n ≥ 5. A5 is the smallest non-abelian simple group, having order 60, and the smallest non-solvable group.
The group A4 has the Klein four-group V as a proper normal subgroup, namely the identity and the double transpositions { (), (12)(34), (13)(24), (14)(23) }, that is the kernel of the surjection of A4 onto A3 ≅ Z3. We have the exact sequence V → A4 → A3 = Z3. In Galois theory, this map, or rather the corresponding map S4 → S3, corresponds to associating the Lagrange resolvent cubic to a quartic, which allows the quartic polynomial to be solved by radicals, as established by Lodovico Ferrari.
As in the symmetric group, any two elements of An that are conjugate by an element of An must have the same cycle shape. The converse is not necessarily true, however. If the cycle shape consists only of cycles of odd length with no two cycles the same length, where cycles of length one are included in the cycle type, then there are exactly two conjugacy classes for this cycle shape ( Scott 1987 , §11.1, p299).
Examples:
As finite symmetric groups are the groups of all permutations of a set with finite elements, and the alternating groups are groups of even permutations, alternating groups are subgroups of finite symmetric groups.
For n ≥ 3, An is generated by 3-cycles, since 3-cycles can be obtained by combining pairs of transpositions. This generating set is often used to prove that An is simple for n ≥ 5.
n | Aut(An) | Out(An) |
---|---|---|
n ≥ 4, n ≠ 6 | Sn | Z2 |
n = 1, 2 | Z1 | Z1 |
n = 3 | Z2 | Z2 |
n = 6 | S6 ⋊ Z2 | V = Z2 × Z2 |
For n > 3, except for n = 6, the automorphism group of An is the symmetric group Sn, with inner automorphism group An and outer automorphism group Z2; the outer automorphism comes from conjugation by an odd permutation.
For n = 1 and 2, the automorphism group is trivial. For n = 3 the automorphism group is Z2, with trivial inner automorphism group and outer automorphism group Z2.
The outer automorphism group of A6 is the Klein four-group V = Z2 × Z2, and is related to the outer automorphism of S6. The extra outer automorphism in A6 swaps the 3-cycles (like (123)) with elements of shape 32 (like (123)(456)).
There are some exceptional isomorphisms between some of the small alternating groups and small groups of Lie type, particularly projective special linear groups. These are:
More obviously, A3 is isomorphic to the cyclic group Z3, and A0, A1, and A2 are isomorphic to the trivial group (which is also SL1(q) = PSL1(q) for any q).
A3 = Z3 (order 3) | A4 (order 12) | A4 × Z2 (order 24) |
S3 = Dih3 (order 6) | S4 (order 24) | A4 in S4 on the left |
A5 is the group of isometries of a dodecahedron in 3-space, so there is a representation A5 → SO3(R).
In this picture the vertices of the polyhedra represent the elements of the group, with the center of the sphere representing the identity element. Each vertex represents a rotation about the axis pointing from the center to that vertex, by an angle equal to the distance from the origin, in radians. Vertices in the same polyhedron are in the same conjugacy class. Since the conjugacy class equation for A5 is 1 + 12 + 12 + 15 + 20 = 60, we obtain four distinct (nontrivial) polyhedra.
The vertices of each polyhedron are in bijective correspondence with the elements of its conjugacy class, with the exception of the conjugacy class of (2,2)-cycles, which is represented by an icosidodecahedron on the outer surface, with its antipodal vertices identified with each other. The reason for this redundancy is that the corresponding rotations are by π radians, and so can be represented by a vector of length π in either of two directions. Thus the class of (2,2)-cycles contains 15 elements, while the icosidodecahedron has 30 vertices.
The two conjugacy classes of twelve 5-cycles in A5 are represented by two icosahedra, of radii 2π/5 and 4π/5, respectively. The nontrivial outer automorphism in Out(A5) ≃ Z2 interchanges these two classes and the corresponding icosahedra.
It can be proved that the 15 puzzle, a famous example of the sliding puzzle, can be represented by the alternating group A15, [2] because the combinations of the 15 puzzle can be generated by 3-cycles. In fact, any 2k − 1 sliding puzzle with square tiles of equal size can be represented by A2k−1.
A4 is the smallest group demonstrating that the converse of Lagrange's theorem is not true in general: given a finite group G and a divisor d of |G|, there does not necessarily exist a subgroup of G with order d: the group G = A4, of order 12, has no subgroup of order 6. A subgroup of three elements (generated by a cyclic rotation of three objects) with any distinct nontrivial element generates the whole group.
For all n > 4, An has no nontrivial (that is, proper) normal subgroups. Thus, An is a simple group for all n > 4. A5 is the smallest non-solvable group.
The group homology of the alternating groups exhibits stabilization, as in stable homotopy theory: for sufficiently large n, it is constant. However, there are some low-dimensional exceptional homology. Note that the homology of the symmetric group exhibits similar stabilization, but without the low-dimensional exceptions (additional homology elements).
The first homology group coincides with abelianization, and (since An is perfect, except for the cited exceptions) is thus:
This is easily seen directly, as follows. An is generated by 3-cycles – so the only non-trivial abelianization maps are An → Z3, since order-3 elements must map to order-3 elements – and for n ≥ 5 all 3-cycles are conjugate, so they must map to the same element in the abelianization, since conjugation is trivial in abelian groups. Thus a 3-cycle like (123) must map to the same element as its inverse (321), but thus must map to the identity, as it must then have order dividing 2 and 3, so the abelianization is trivial.
For n < 3, An is trivial, and thus has trivial abelianization. For A3 and A4 one can compute the abelianization directly, noting that the 3-cycles form two conjugacy classes (rather than all being conjugate) and there are non-trivial maps A3 ↠ Z3 (in fact an isomorphism) and A4 ↠ Z3.
The Schur multipliers of the alternating groups An (in the case where n is at least 5) are the cyclic groups of order 2, except in the case where n is either 6 or 7, in which case there is also a triple cover. In these cases, then, the Schur multiplier is (the cyclic group) of order 6. [3] These were first computed in ( Schur 1911 ).
{{citation}}
: CS1 maint: postscript (link)In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.
In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, geometry, and chemistry.
A group is a set together with an associative operation which admits an identity element and such that every element has an inverse.
In the area of modern algebra known as group theory, the Conway groups are the three sporadic simple groups Co1, Co2 and Co3 along with the related finite group Co0 introduced by (Conway 1968, 1969).
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group
In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).
In mathematics, more specifically in group theory, a group is said to be perfect if it equals its own commutator subgroup, or equivalently, if the group has no non-trivial abelian quotients. In symbols, a perfect group is one such that G(1) = G, or equivalently one such that Gab = {1}.
In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete.
In the area of modern algebra known as group theory, the Lyons groupLy or Lyons-Sims groupLyS is a sporadic simple group of order
In mathematics, D3 (sometimes alternatively denoted by D6) is the dihedral group of degree 3, or, in other words, the dihedral group of order 6. It is isomorphic to the symmetric group S3 of degree 3. It is also the smallest non-abelian group.
In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism
In the area of modern algebra known as group theory, the Janko groupJ1 is a sporadic simple group of order
In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.
In the area of modern algebra known as group theory, the Mathieu groupM12 is a sporadic simple group of order
In the area of modern algebra known as group theory, the Mathieu groupM24 is a sporadic simple group of order
In mathematics, a hyperoctahedral group is an important type of group that can be realized as the group of symmetries of a hypercube or of a cross-polytope. It was named by Alfred Young in 1930. Groups of this type are identified by a parameter n, the dimension of the hypercube.
In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold.
In the area of modern algebra known as group theory, the Conway groupCo2 is a sporadic simple group of order