Automorphisms of the symmetric and alternating groups

Last updated

In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.

Contents

Summary

[1]

Generic case

Formally, is complete and the natural map is an isomorphism.
Indeed, the natural maps are isomorphisms.

Exceptional cases

The exceptional outer automorphism of S6

Among symmetric groups, only S6 has a non-trivial outer automorphism, which one can call exceptional (in analogy with exceptional Lie algebras) or exotic. In fact, Out(S6) = C2. [2]

This was discovered by Otto Hölder in 1895. [2] [3]

The specific nature of the outer automorphism is as follows. The 360 permutations in the even subgroup (A6) are transformed amongst themselves:

And the odd part is also conserved:

Thus, all 720 permutations on 6 elements are accounted for. The outer automorphism does not preserve cycle structure in general, mapping some single cycles to the product of two or three cycles and vice versa.

This also yields another outer automorphism of A6, and this is the only exceptional outer automorphism of a finite simple group: [4] for the infinite families of simple groups, there are formulas for the number of outer automorphisms, and the simple group of order 360, thought of as A6, would be expected to have two outer automorphisms, not four. However, when A6 is viewed as PSL(2, 9) the outer automorphism group has the expected order. (For sporadic groups – i.e. those not falling in an infinite family – the notion of exceptional outer automorphism is ill-defined, as there is no general formula.)

Construction

There are numerous constructions, listed in ( Janusz & Rotman 1982 ).

Note that as an outer automorphism, it is a class of automorphisms, well-determined only up to an inner automorphism, hence there is not a natural one to write down.

One method is:

Throughout the following, one can work with the multiplication action on cosets or the conjugation action on conjugates.

To see that S6 has an outer automorphism, recall that homomorphisms from a group G to a symmetric group Sn are essentially the same as actions of G on a set of n elements, and the subgroup fixing a point is then a subgroup of index at most n in G. Conversely if we have a subgroup of index n in G, the action on the cosets gives a transitive action of G on n points, and therefore a homomorphism to Sn.

Construction from graph partitions

Before the more mathematically rigorous constructions, it helps to understand a simple construction.

Take a complete graph with 6 vertices, K6. It has 15 edges, which can be partitioned into perfect matchings in 15 different ways, each perfect matching being a set of three edges no two of which share a vertex. It is possible to find a set of 5 perfect matchings from the set of 15 such that no two matchings share an edge, and that between them include all 5 × 3 = 15 edges of the graph; this graph factorization can be done in 6 different ways.

Consider a permutation of the 6 vertices, and see its effect on the 6 different factorizations. We get a map from 720 input permutations to 720 output permutations. That map is precisely the outer automorphism of S6.

Being an automorphism, the map must preserve the order of elements, but unlike inner automorphisms, it does not preserve cycle structure, thereby indicating that it must be an outer automorphism. For instance, a 2-cycle maps to a product of three 2-cycles; it is easy to see that a 2-cycle affects all of the 6 graph factorizations in some way, and hence has no fixed points when viewed as a permutation of factorizations. The fact that it is possible to construct this automorphism at all relies on a large number of numerical coincidences which apply only to n = 6.

Exotic map S5 S6

There is a subgroup (indeed, 6 conjugate subgroups) of S6 which is abstractly isomorphic to S5, but which acts transitively as a subgroup of S6 on a set of 6 elements. (The image of the obvious map Sn  Sn+1 fixes an element and thus is not transitive.)

Sylow 5-subgroups

Janusz and Rotman construct it thus:

  • S5 acts transitively by conjugation on the set of its 6 Sylow 5-subgroups, yielding an embedding S5  S6 as a transitive subgroup of order 120.

This follows from inspection of 5-cycles: each 5-cycle generates a group of order 5 (thus a Sylow subgroup), there are 5!/5 = 120/5 = 24  5-cycles, yielding 6 subgroups (as each subgroup also includes the identity), and Sn acts transitively by conjugation on the set of cycles of a given class, hence transitively by conjugation on these subgroups.

Alternately, one could use the Sylow theorems, which state generally that all Sylow p-subgroups are conjugate.

PGL(2,5)

The projective linear group of dimension two over the finite field with five elements, PGL(2, 5), acts on the projective line over the field with five elements, P1(F5), which has six elements. Further, this action is faithful and 3-transitive, as is always the case for the action of the projective linear group on the projective line. This yields a map PGL(2, 5)  S6 as a transitive subgroup. Identifying PGL(2, 5) with S5 and the projective special linear group PSL(2, 5) with A5 yields the desired exotic maps S5  S6 and A5  A6. [5]

Following the same philosophy, one can realize the outer automorphism as the following two inequivalent actions of S6 on a set with six elements: [6]

  • the usual action as a permutation group;
  • the six inequivalent structures of an abstract 6-element set as the projective line P1(F5) – the line has 6 points, and the projective linear group acts 3-transitively, so fixing 3 of the points, there are 3! = 6 different ways to arrange the remaining 3 points, which yields the desired alternative action.

Frobenius group

Another way: To construct an outer automorphism of S6, we need to construct an "unusual" subgroup of index 6 in S6, in other words one that is not one of the six obvious S5 subgroups fixing a point (which just correspond to inner automorphisms of S6).

The Frobenius group of affine transformations of F5 (maps where a  0) has order 20 = (5  1) · 5 and acts on the field with 5 elements, hence is a subgroup of S5. (Indeed, it is the normalizer of a Sylow 5-group mentioned above, thought of as the order-5 group of translations of F5.)

S5 acts transitively on the coset space, which is a set of 120/20 = 6 elements (or by conjugation, which yields the action above).

Other constructions

Ernst Witt found a copy of Aut(S6) in the Mathieu group M12 (a subgroup T isomorphic to S6 and an element σ that normalizes T and acts by outer automorphism). Similarly to S6 acting on a set of 6 elements in 2 different ways (having an outer automorphism), M12 acts on a set of 12 elements in 2 different ways (has an outer automorphism), though since M12 is itself exceptional, one does not consider this outer automorphism to be exceptional itself.

The full automorphism group of A6 appears naturally as a maximal subgroup of the Mathieu group M12 in 2 ways, as either a subgroup fixing a division of the 12 points into a pair of 6-element sets, or as a subgroup fixing a subset of 2 points.

Another way to see that S6 has a nontrivial outer automorphism is to use the fact that A6 is isomorphic to PSL2(9), whose automorphism group is the projective semilinear group PΓL2(9), in which PSL2(9) is of index 4, yielding an outer automorphism group of order 4. The most visual way to see this automorphism is to give an interpretation via algebraic geometry over finite fields, as follows. Consider the action of S6 on affine 6-space over the field k with 3 elements. This action preserves several things: the hyperplane H on which the coordinates sum to 0, the line L in H where all coordinates coincide, and the quadratic form q given by the sum of the squares of all 6 coordinates. The restriction of q to H has defect line L, so there is an induced quadratic form Q on the 4-dimensional H/L that one checks is non-degenerate and non-split. The zero scheme of Q in H/L defines a smooth quadric surface X in the associated projective 3-space over k. Over an algebraic closure of k, X is a product of two projective lines, so by a descent argument X is the Weil restriction to k of the projective line over a quadratic étale algebra K. Since Q is not split over k, an auxiliary argument with special orthogonal groups over k forces K to be a field (rather than a product of two copies of k). The natural S6-action on everything in sight defines a map from S6 to the k-automorphism group of X, which is the semi-direct product G of PGL2(K) = PGL2(9) against the Galois involution. This map carries the simple group A6 nontrivially into (hence onto) the subgroup PSL2(9) of index 4 in the semi-direct product G, so S6 is thereby identified as an index-2 subgroup of G (namely, the subgroup of G generated by PSL2(9) and the Galois involution). Conjugation by any element of G outside of S6 defines the nontrivial outer automorphism of S6.

Structure of outer automorphism

On cycles, it exchanges permutations of type (12) with (12)(34)(56) (class 21 with class 23), and of type (123) with (145)(263) (class 31 with class 32). The outer automorphism also exchanges permutations of type (12)(345) with (123456) (class 2131 with class 61). For each of the other cycle types in S6, the outer automorphism fixes the class of permutations of the cycle type.

On A6, it interchanges the 3-cycles (like (123)) with elements of class 32 (like (123)(456)).

No other outer automorphisms

To see that none of the other symmetric groups have outer automorphisms, it is easiest to proceed in two steps:

  1. First, show that any automorphism that preserves the conjugacy class of transpositions is an inner automorphism. (This also shows that the outer automorphism of S6 is unique; see below.) Note that an automorphism must send each conjugacy class (characterized by the cyclic structure that its elements share) to a (possibly different) conjugacy class.
  2. Second, show that every automorphism (other than the above for S6) stabilizes the class of transpositions.

The latter can be shown in two ways:

Each permutation of order two (called an involution) is a product of k > 0 disjoint transpositions, so that it has cyclic structure 2k1n−2k. What is special about the class of transpositions (k = 1)?

If one forms the product of two distinct transpositions τ1 and τ2, then one always obtains either a 3-cycle or a permutation of type 221n−4, so the order of the produced element is either 2 or 3. On the other hand, if one forms the product of two distinct involutions σ1, σ2 of type k > 1, then provided n ≥ 7, it is always possible to produce an element of order 6, 7 or 4, as follows. We can arrange that the product contains either

For k ≥ 5, adjoin to the permutations σ1, σ2 of the last example redundant 2-cycles that cancel each other, and we still get two 4-cycles.

Now we arrive at a contradiction, because if the class of transpositions is sent via the automorphism f to a class of involutions that has k > 1, then there exist two transpositions τ1, τ2 such that f(τ1) f(τ2) has order 6, 7 or 4, but we know that τ1τ2 has order 2 or 3.

No other outer automorphisms of S6

S6 has exactly one (class) of outer automorphisms: Out(S6) = C2.

To see this, observe that there are only two conjugacy classes of S6 of size 15: the transpositions and those of class 23. Each element of Aut(S6) either preserves each of these conjugacy classes, or exchanges them. Any representative of the outer automorphism constructed above exchanges the conjugacy classes, whereas an index 2 subgroup stabilizes the transpositions. But an automorphism that stabilizes the transpositions is inner, so the inner automorphisms form an index 2 subgroup of Aut(S6), so Out(S6) = C2.

More pithily: an automorphism that stabilizes transpositions is inner, and there are only two conjugacy classes of order 15 (transpositions and triple transpositions), hence the outer automorphism group is at most order 2.

Small n

Symmetric

For n = 2, S2 = C2 = Z/2 and the automorphism group is trivial (obviously, but more formally because Aut(Z/2) = GL(1, Z/2) = Z/2* = C1). The inner automorphism group is thus also trivial (also because S2 is abelian).

Alternating

For n = 1 and 2, A1 = A2 = C1 is trivial, so the automorphism group is also trivial. For n = 3, A3 = C3 = Z/3 is abelian (and cyclic): the automorphism group is GL(1, Z/3*) = C2, and the inner automorphism group is trivial (because it is abelian).

Notes

  1. Janusz & Rotman 1982.
  2. 1 2 Lam, T. Y., & Leep, D. B. (1993). "Combinatorial structure on the automorphism group of S6". Expositiones Mathematicae , 11(4), 289–308.
  3. Otto Hölder (1895), "Bildung zusammengesetzter Gruppen", Mathematische Annalen , 46, 321–422.
  4. Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. (2003), ATLAS of Finite Groups, Oxford University Press, p. xvi, ISBN   978-0-19-853199-9
  5. Carnahan, Scott (2007-10-27), "Small finite sets", Secret Blogging Seminar, notes on a talk by Jean-Pierre Serre.{{citation}}: CS1 maint: postscript (link)
  6. Snyder, Noah (2007-10-28), "The Outer Automorphism of S6", Secret Blogging Seminar

Related Research Articles

In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

<span class="mw-page-title-main">Semidirect product</span> Operation in group theory

In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol . There are two closely related concepts of semidirect product:

<span class="mw-page-title-main">Conjugacy class</span> In group theory, equivalence class under the relation of conjugation

In mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group.

<span class="mw-page-title-main">Alternating group</span> Group of even permutations of a finite set

In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of n elements is called the alternating group of degree n, or the alternating group on n letters and denoted by An or Alt(n).

In abstract algebra, an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the conjugating element. They can be realized via operations from within the group itself, hence the adjective "inner". These inner automorphisms form a subgroup of the automorphism group, and the quotient of the automorphism group by this subgroup is defined as the outer automorphism group.

<span class="mw-page-title-main">Dihedral group</span> Group of symmetries of a regular polygon

In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory and geometry.

<span class="mw-page-title-main">Glossary of group theory</span>

A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.

<span class="mw-page-title-main">Projective linear group</span> Construction in group theory

In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space V on the associated projective space P(V). Explicitly, the projective linear group is the quotient group

In mathematics, the outer automorphism group of a group, G, is the quotient, Aut(G) / Inn(G), where Aut(G) is the automorphism group of G and Inn(G) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted Out(G). If Out(G) is trivial and G has a trivial center, then G is said to be complete.

In mathematics, especially in the area of algebra known as group theory, the holomorph of a group , denoted , is a group that simultaneously contains and its automorphism group . It provides interesting examples of groups, and allows one to treat group elements and group automorphisms in a uniform context. The holomorph can be described as a semidirect product or as a permutation group.

In mathematics, the binary icosahedral group 2I or ⟨2,3,5⟩ is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the preimage of the icosahedral group under the 2:1 covering homomorphism

In mathematics, Out(Fn) is the outer automorphism group of a free group on n generators. These groups are at universal stage in geometric group theory, as they act on the set of presentations with generators of any finitely generated group. Despite geometric analogies with general linear groups and mapping class groups, their complexity is generally regarded as more challenging, which has fueled the development of new techniques in the field.

Mathieu group M<sub>12</sub> Sporadic simple group

In the area of modern algebra known as group theory, the Mathieu groupM12 is a sporadic simple group of order

Mathieu group M<sub>24</sub> Sporadic simple group

In the area of modern algebra known as group theory, the Mathieu groupM24 is a sporadic simple group of order

<span class="mw-page-title-main">McLaughlin sporadic group</span> Sporadic simple group

In the area of modern algebra known as group theory, the McLaughlin group McL is a sporadic simple group of order

In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group is almost simple if there is a (non-abelian) simple group S such that , where the inclusion of in is the action by conjugation, which is faithful since is has trivial center.

In the area of modern algebra known as group theory, the Suzuki groups, denoted by Sz(22n+1), 2B2(22n+1), Suz(22n+1), or G(22n+1), form an infinite family of groups of Lie type found by Suzuki, that are simple for n ≥ 1. These simple groups are the only finite non-abelian ones with orders not divisible by 3.

In the mathematical subject geometric group theory, a fully irreducible automorphism of the free group Fn is an element of Out(Fn) which has no periodic conjugacy classes of proper free factors in Fn. Fully irreducible automorphisms are also referred to as "irreducible with irreducible powers" or "iwip" automorphisms. The notion of being fully irreducible provides a key Out(Fn) counterpart of the notion of a pseudo-Anosov element of the mapping class group of a finite type surface. Fully irreducibles play an important role in the study of structural properties of individual elements and of subgroups of Out(Fn).

Whitehead's algorithm is a mathematical algorithm in group theory for solving the automorphic equivalence problem in the finite rank free group Fn. The algorithm is based on a classic 1936 paper of J. H. C. Whitehead. It is still unknown if Whitehead's algorithm has polynomial time complexity.

References