Algebraic structure → Group theory Group theory |
---|
In mathematics, specifically in group theory, an elementary abelian group is an abelian group in which all elements other than the identity have the same order. This common order must be a prime number, and the elementary abelian groups in which the common order is p are a particular kind of p-group. [1] [2] A group for which p = 2 (that is, an elementary abelian 2-group) is sometimes called a Boolean group. [3]
Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ)n for n a non-negative integer (sometimes called the group's rank). Here, Z/pZ denotes the cyclic group of order p (or equivalently the integers mod p), and the superscript notation means the n-fold direct product of groups. [2]
In general, a (possibly infinite) elementary abelian p-group is a direct sum of cyclic groups of order p. [4] (Note that in the finite case the direct product and direct sum coincide, but this is not so in the infinite case.)
Suppose V (Z/pZ)n is a finite elementary abelian group. Since Z/pZFp, the finite field of p elements, we have V = (Z/pZ)nFpn, hence V can be considered as an n-dimensional vector space over the field Fp. Note that an elementary abelian group does not in general have a distinguished basis: choice of isomorphism V (Z/pZ)n corresponds to a choice of basis.
To the observant reader, it may appear that Fpn has more structure than the group V, in particular that it has scalar multiplication in addition to (vector/group) addition. However, V as an abelian group has a unique Z-module structure where the action of Z corresponds to repeated addition, and this Z-module structure is consistent with the Fp scalar multiplication. That is, c⋅g = g + g + ... + g (c times) where c in Fp (considered as an integer with 0 ≤ c < p) gives V a natural Fp-module structure.
As a finite-dimensional vector space V has a basis {e1, ..., en} as described in the examples, if we take {v1, ..., vn} to be any n elements of V, then by linear algebra we have that the mapping T(ei) = vi extends uniquely to a linear transformation of V. Each such T can be considered as a group homomorphism from V to V (an endomorphism) and likewise any endomorphism of V can be considered as a linear transformation of V as a vector space.
If we restrict our attention to automorphisms of V we have Aut(V) = { T : V→V | ker T = 0 } = GLn(Fp), the general linear group of n × n invertible matrices on Fp.
The automorphism group GL(V) = GLn(Fp) acts transitively on V \ {0} (as is true for any vector space). This in fact characterizes elementary abelian groups among all finite groups: if G is a finite group with identity e such that Aut(G) acts transitively on G \ {e}, then G is elementary abelian. (Proof: if Aut(G) acts transitively on G \ {e}, then all nonidentity elements of G have the same (necessarily prime) order. Then G is a p-group. It follows that G has a nontrivial center, which is necessarily invariant under all automorphisms, and thus equals all of G.)
It can also be of interest to go beyond prime order components to prime-power order. Consider an elementary abelian group G to be of type (p,p,...,p) for some prime p. A homocyclic group [5] (of rank n) is an abelian group of type (m,m,...,m) i.e. the direct product of n isomorphic cyclic groups of order m, of which groups of type (pk,pk,...,pk) are a special case.
The extra special groups are extensions of elementary abelian groups by a cyclic group of order p, and are analogous to the Heisenberg group.
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object.
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after Niels Henrik Abel.
In mathematics, particularly in the area of abstract algebra known as group theory, a characteristic subgroup is a subgroup that is mapped to itself by every automorphism of the parent group. Because every conjugation map is an inner automorphism, every characteristic subgroup is normal; though the converse is not guaranteed. Examples of characteristic subgroups include the commutator subgroup and the center of a group.
In abstract algebra, a group isomorphism is a function between two groups that sets up a bijection between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p.
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. It is usually denoted with the symbol ⋉. There are two closely related concepts of semidirect product:
In abstract algebra, a cyclic group or monogenous group is a group, denoted Cn, that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a generator of the group.
In abstract algebra an inner automorphism is an automorphism of a group, ring, or algebra given by the conjugation action of a fixed element, called the conjugating element. They can be realized via operations from within the group itself, hence the adjective "inner". These inner automorphisms form a subgroup of the automorphism group, and the quotient of the automorphism group by this subgroup is defined as the outer automorphism group.
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.
In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula
In mathematics, a free abelian group is an abelian group with a basis. Being an abelian group means that it is a set with an addition operation that is associative, commutative, and invertible. A basis, also called an integral basis, is a subset such that every element of the group can be uniquely expressed as an integer combination of finitely many basis elements. For instance the two-dimensional integer lattice forms a free abelian group, with coordinatewise addition as its operation, and with the two points (1,0) and (0,1) as its basis. Free abelian groups have properties which make them similar to vector spaces, and may equivalently be called free-modules, the free modules over the integers. Lattice theory studies free abelian subgroups of real vector spaces. In algebraic topology, free abelian groups are used to define chain groups, and in algebraic geometry they are used to define divisors.
A group is a set together with an associative operation that admits an identity element and such that there exists an inverse for every element.
In mathematics, a Frobenius group is a transitive permutation group on a finite set, such that no non-trivial element fixes more than one point and some non-trivial element fixes a point. They are named after F. G. Frobenius.
In mathematics, especially in the area of algebra known as group theory, the holomorph of a group , denoted , is a group that simultaneously contains and its automorphism group . It provides interesting examples of groups, and allows one to treat group elements and group automorphisms in a uniform context. The holomorph can be described as a semidirect product or as a permutation group.
In mathematics, specifically in group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets and is one of several important notions of direct product in mathematics.
In group theory, a branch of mathematics, the automorphisms and outer automorphisms of the symmetric groups and alternating groups are both standard examples of these automorphisms, and objects of study in their own right, particularly the exceptional outer automorphism of S6, the symmetric group on 6 elements.
In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself. If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X.