This article needs additional citations for verification .(November 2024) |
Algebraic structure → Group theory Group theory |
---|
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for research on other topics in algebraic geometry and number theory.
An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those complex tori that can be holomorphically embedded into a complex projective space.
Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. Localization techniques lead naturally from abelian varieties defined over number fields to ones defined over finite fields and various local fields. Since a number field is the fraction field of a Dedekind domain, for any nonzero prime of your Dedekind domain, there is a map from the Dedekind domain to the quotient of the Dedekind domain by the prime, which is a finite field for all finite primes. This induces a map from the fraction field to any such finite field. Given a curve with equation defined over the number field, we can apply this map to the coefficients to get a curve defined over some finite field, where the choices of finite field correspond to the finite primes of the number field.
Abelian varieties appear naturally as Jacobian varieties (the connected components of zero in Picard varieties) and Albanese varieties of other algebraic varieties. The group law of an abelian variety is necessarily commutative and the variety is non-singular. An elliptic curve is an abelian variety of dimension 1. Abelian varieties have Kodaira dimension 0.
In the early nineteenth century, the theory of elliptic functions succeeded in giving a basis for the theory of elliptic integrals, and this left open an obvious avenue of research. The standard forms for elliptic integrals involved the square roots of cubic and quartic polynomials. When those were replaced by polynomials of higher degree, say quintics, what would happen?
In the work of Niels Abel and Carl Jacobi, the answer was formulated: this would involve functions of two complex variables, having four independent periods (i.e. period vectors). This gave the first glimpse of an abelian variety of dimension 2 (an abelian surface): what would now be called the Jacobian of a hyperelliptic curve of genus 2.
After Abel and Jacobi, some of the most important contributors to the theory of abelian functions were Riemann, Weierstrass, Frobenius, Poincaré, and Picard. The subject was very popular at the time, already having a large literature.
By the end of the 19th century, mathematicians had begun to use geometric methods in the study of abelian functions. Eventually, in the 1920s, Lefschetz laid the basis for the study of abelian functions in terms of complex tori. He also appears to be the first to use the name "abelian variety". It was André Weil in the 1940s who gave the subject its modern foundations in the language of algebraic geometry.
Today, abelian varieties form an important tool in number theory, in dynamical systems (more specifically in the study of Hamiltonian systems), and in algebraic geometry (especially Picard varieties and Albanese varieties).
A complex torus of dimension g is a torus of real dimension 2g that carries the structure of a complex manifold. It can always be obtained as the quotient of a g-dimensional complex vector space by a lattice of rank 2g. A complex abelian variety of dimension g is a complex torus of dimension g that is also a projective algebraic variety over the field of complex numbers. By invoking the Kodaira embedding theorem and Chow's theorem, one may equivalently define a complex abelian variety of dimension g to be a complex torus of dimension g that admits a positive line bundle. Since they are complex tori, abelian varieties carry the structure of a group. A morphism of abelian varieties is a morphism of the underlying algebraic varieties that preserves the identity element for the group structure. An isogeny is a finite-to-one morphism.
When a complex torus carries the structure of an algebraic variety, this structure is necessarily unique. In the case , the notion of abelian variety is the same as that of elliptic curve, and every complex torus gives rise to such a curve; for it has been known since Riemann that the algebraic variety condition imposes extra constraints on a complex torus.
The following criterion by Riemann decides whether or not a given complex torus is an abelian variety, i.e., whether or not it can be embedded into a projective space. Let X be a g-dimensional torus given as where V is a complex vector space of dimension g and L is a lattice in V. Then X is an abelian variety if and only if there exists a positive definite hermitian form on V whose imaginary part takes integral values on . Such a form on X is usually called a (non-degenerate) Riemann form. Choosing a basis for V and L, one can make this condition more explicit. There are several equivalent formulations of this; all of them are known as the Riemann conditions.
Every algebraic curve C of genus is associated with an abelian variety J of dimension g, by means of an analytic map of C into J. As a torus, J carries a commutative group structure, and the image of C generates J as a group. More accurately, J is covered by : [1] any point in J comes from a g-tuple of points in C. The study of differential forms on C, which give rise to the abelian integrals with which the theory started, can be derived from the simpler, translation-invariant theory of differentials on J. The abelian variety J is called the Jacobian variety of C, for any non-singular curve C over the complex numbers. From the point of view of birational geometry, its function field is the fixed field of the symmetric group on g letters acting on the function field of .
An abelian function is a meromorphic function on an abelian variety, which may be regarded therefore as a periodic function of n complex variables, having 2n independent periods; equivalently, it is a function in the function field of an abelian variety. For example, in the nineteenth century there was much interest in hyperelliptic integrals that may be expressed in terms of elliptic integrals. This comes down to asking that J is a product of elliptic curves, up to an isogeny.
One important structure theorem of abelian varieties is Matsusaka's theorem. It states that over an algebraically closed field every abelian variety is the quotient of the Jacobian of some curve; that is, there is some surjection of abelian varieties where is a Jacobian. This theorem remains true if the ground field is infinite. [2]
Two equivalent definitions of abelian variety over a general field k are commonly in use:
When the base is the field of complex numbers, these notions coincide with the previous definition. Over all bases, elliptic curves are abelian varieties of dimension 1.
In the early 1940s, Weil used the first definition (over an arbitrary base field) but could not at first prove that it implied the second. Only in 1948 did he prove that complete algebraic groups can be embedded into projective space. Meanwhile, in order to make the proof of the Riemann hypothesis for curves over finite fields that he had announced in 1940 work, he had to introduce the notion of an abstract variety and to rewrite the foundations of algebraic geometry to work with varieties without projective embeddings (see also the history section in the Algebraic Geometry article).
By the definitions, an abelian variety is a group variety. Its group of points can be proven to be commutative.
For the field , and hence by the Lefschetz principle for every algebraically closed field of characteristic zero, the torsion group of an abelian variety of dimension g is isomorphic to . Hence, its n-torsion part is isomorphic to , i.e., the product of 2g copies of the cyclic group of order n.
When the base field is an algebraically closed field of characteristic p, the n-torsion is still isomorphic to when n and p are coprime. When n and p are not coprime, the same result can be recovered provided one interprets it as saying that the n-torsion defines a finite flat group scheme of rank 2g. If instead of looking at the full scheme structure on the n-torsion, one considers only the geometric points, one obtains a new invariant for varieties in characteristic p (the so-called p-rank when ).
The group of k-rational points for a global field k is finitely generated by the Mordell-Weil theorem. Hence, by the structure theorem for finitely generated abelian groups, it is isomorphic to a product of a free abelian group and a finite commutative group for some non-negative integer r called the rank of the abelian variety. Similar results hold for some other classes of fields k.
The product of an abelian variety A of dimension m, and an abelian variety B of dimension n, over the same field, is an abelian variety of dimension . An abelian variety is simple if it is not isogenous to a product of abelian varieties of lower dimension. Any abelian variety is isogenous to a product of simple abelian varieties.
To an abelian variety A over a field k, one associates a dual abelian variety (over the same field), which is the solution to the following moduli problem. A family of degree 0 line bundles parametrised by a k-variety T is defined to be a line bundle L on such that
Then there is a variety and a family of degree 0 line bundles P, the Poincaré bundle, parametrised by such that a family L on T is associated a unique morphism so that L is isomorphic to the pullback of P along the morphism . Applying this to the case when T is a point, we see that the points of correspond to line bundles of degree 0 on A, so there is a natural group operation on given by tensor product of line bundles, which makes it into an abelian variety.
This association is a duality in the sense that it is contravariant functorial, i.e., it associates to all morphisms dual morphisms in a compatible way, and there is a natural isomorphism between the double dual and (defined via the Poincaré bundle). The n-torsion of an abelian variety and the n-torsion of its dual are dual to each other when n is coprime to the characteristic of the base. In general — for all n— the n-torsion group schemes of dual abelian varieties are Cartier duals of each other. This generalises the Weil pairing for elliptic curves.
A polarisation of an abelian variety is an isogeny from an abelian variety to its dual that is symmetric with respect to double-duality for abelian varieties and for which the pullback of the Poincaré bundle along the associated graph morphism is ample (so it is analogous to a positive-definite quadratic form). Polarised abelian varieties have finite automorphism groups. A principal polarisation is a polarisation that is an isomorphism. Jacobians of curves are naturally equipped with a principal polarisation as soon as one picks an arbitrary rational base point on the curve, and the curve can be reconstructed from its polarised Jacobian when the genus is . Not all principally polarised abelian varieties are Jacobians of curves; see the Schottky problem. A polarisation induces a Rosati involution on the endomorphism ring of A.
Over the complex numbers, a polarised abelian variety can be defined as an abelian variety A together with a choice of a Riemann form H. Two Riemann forms and are called equivalent if there are positive integers n and m such that . A choice of an equivalence class of Riemann forms on A is called a polarisation of A; over the complex number this is equivalent to the definition of polarisation given above. A morphism of polarised abelian varieties is a morphism of abelian varieties such that the pullback of the Riemann form on B to A is equivalent to the given form on A.
One can also define abelian varieties scheme-theoretically and relative to a base. This allows for a uniform treatment of phenomena such as reduction mod p of abelian varieties (see Arithmetic of abelian varieties), and parameter-families of abelian varieties. An abelian scheme over a base scheme S of relative dimension g is a proper, smooth group scheme over S whose geometric fibers are connected and of dimension g. The fibers of an abelian scheme are abelian varieties, so one could think of an abelian scheme over S as being a family of abelian varieties parametrised by S.
For an abelian scheme , the group of n-torsion points forms a finite flat group scheme. The union of the -torsion points, for all n, forms a p-divisible group. Deformations of abelian schemes are, according to the Serre–Tate theorem, governed by the deformation properties of the associated p-divisible groups.
Let be such that has no repeated complex roots. Then the discriminant is nonzero. Let , so is an open subscheme of . Then is an abelian scheme over . It can be extended to a Néron model over , which is a smooth group scheme over , but the Néron model is not proper and hence is not an abelian scheme over .
Viktor Abrashkin [3] and Jean-Marc Fontaine [4] independently proved that there are no nonzero abelian varieties over with good reduction at all primes. Equivalently, there are no nonzero abelian schemes over . The proof involves showing that the coordinates of -torsion points generate number fields with very little ramification and hence of small discriminant, while, on the other hand, there are lower bounds on discriminants of number fields. [5]
A semiabelian variety is a commutative group variety which is an extension of an abelian variety by a torus. [6]
In mathematics, complex geometry is the study of geometric structures and constructions arising out of, or described by, the complex numbers. In particular, complex geometry is concerned with the study of spaces such as complex manifolds and complex algebraic varieties, functions of several complex variables, and holomorphic constructions such as holomorphic vector bundles and coherent sheaves. Application of transcendental methods to algebraic geometry falls in this category, together with more geometric aspects of complex analysis.
In mathematics, K-theory is, roughly speaking, the study of a ring generated by vector bundles over a topological space or scheme. In algebraic topology, it is a cohomology theory known as topological K-theory. In algebra and algebraic geometry, it is referred to as algebraic K-theory. It is also a fundamental tool in the field of operator algebras. It can be seen as the study of certain kinds of invariants of large matrices.
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.
In mathematics, restriction of scalars is a functor which, for any finite extension of fields L/k and any algebraic variety X over L, produces another variety ResL/kX, defined over k. It is useful for reducing questions about varieties over large fields to questions about more complicated varieties over smaller fields.
In mathematics, in particular algebraic geometry, a moduli space is a geometric space whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space. In this context, the term "modulus" is used synonymously with "parameter"; moduli spaces were first understood as spaces of parameters rather than as spaces of objects. A variant of moduli spaces is formal moduli. Bernhard Riemann first used the term "moduli" in 1857.
In mathematics, specifically algebraic geometry, a scheme is a structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities and allowing "varieties" defined over any commutative ring.
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.
In mathematics, the Jacobian varietyJ(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by , , or , is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups . These groups were named by analogy with the theory of tori in Lie group theory. For example, over the complex numbers the algebraic torus is isomorphic to the group scheme , which is the scheme theoretic analogue of the Lie group . In fact, any -action on a complex vector space can be pulled back to a -action from the inclusion as real manifolds.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors. Both are derived from the notion of divisibility in the integers and algebraic number fields.
In mathematics, the Albanese variety, named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve.
In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.
In mathematics, a dual abelian variety can be defined from an abelian variety A, defined over a field k. A 1-dimensional abelian variety is an elliptic curve, and every elliptic curve is isomorphic to its dual, but this fails for higher-dimensional abelian varieties, so the concept of dual becomes more interesting in higher dimensions.
In algebraic geometry, a morphism between schemes is said to be smooth if
In mathematics, the Abel–Jacobi map is a construction of algebraic geometry which relates an algebraic curve to its Jacobian variety. In Riemannian geometry, it is a more general construction mapping a manifold to its Jacobi torus. The name derives from the theorem of Abel and Jacobi that two effective divisors are linearly equivalent if and only if they are indistinguishable under the Abel–Jacobi map.
This is a glossary of algebraic geometry.