Global field

Last updated

In mathematics, a global field is one of two types of fields (the other one is local fields) that are characterized using valuations. There are two kinds of global fields: [1]

Contents

An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. [2] [3]

Formal definitions

A global field is one of the following:

An algebraic number field

An algebraic number field F is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus F is a field that contains Q and has finite dimension when considered as a vector space over Q.

The function field of an irreducible algebraic curve over a finite field

A function field of an algebraic variety is the set of all rational functions on that variety. On an irreducible algebraic curve (i.e. a one-dimensional variety V) over a finite field, we say that a rational function on an open affine subset U is defined as the ratio of two polynomials in the affine coordinate ring of U, and that a rational function on all of V consists of such local data that agree on the intersections of open affines. This technically defines the rational functions on V to be the field of fractions of the affine coordinate ring of any open affine subset, since all such subsets are dense.

Analogies between the two classes of fields

There are a number of formal similarities between the two kinds of fields. A field of either type has the property that all of its completions are locally compact fields (see local fields). Every field of either type can be realized as the field of fractions of a Dedekind domain in which every non-zero ideal is of finite index. In each case, one has the product formula for non-zero elements x:

where v varies over all valuations of the field.

The analogy between the two kinds of fields has been a strong motivating force in algebraic number theory. The idea of an analogy between number fields and Riemann surfaces goes back to Richard Dedekind and Heinrich M. Weber in the nineteenth century. The more strict analogy expressed by the 'global field' idea, in which a Riemann surface's aspect as algebraic curve is mapped to curves defined over a finite field, was built up during the 1930s, culminating in the Riemann hypothesis for curves over finite fields settled by André Weil in 1940. The terminology may be due to Weil, who wrote his Basic Number Theory (1967) in part to work out the parallelism.

It is usually easier to work in the function field case and then try to develop parallel techniques on the number field side. The development of Arakelov theory and its exploitation by Gerd Faltings in his proof of the Mordell conjecture is a dramatic example. The analogy was also influential in the development of Iwasawa theory and the Main Conjecture. The proof of the fundamental lemma in the Langlands program also made use of techniques that reduced the number field case to the function field case.

Theorems

Hasse–Minkowski theorem

The Hasse–Minkowski theorem is a fundamental result in number theory that states that two quadratic forms over a global field are equivalent if and only if they are equivalent locally at all places, i.e. equivalent over every completion of the field.

Artin reciprocity law

Artin's reciprocity law implies a description of the abelianization of the absolute Galois group of a global field K that is based on the Hasse local–global principle. It can be described in terms of cohomology as follows:

Let LvKv be a Galois extension of local fields with Galois group G. The local reciprocity law describes a canonical isomorphism

called the local Artin symbol, the local reciprocity map or the norm residue symbol. [4] [5]

Let LK be a Galois extension of global fields and CL stand for the idèle class group of L. The maps θv for different places v of K can be assembled into a single global symbol map by multiplying the local components of an idèle class. One of the statements of the Artin reciprocity law is that this results in a canonical isomorphism. [6] [7]

Citations

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a field K is called a (non-Archimedean) local field if it is complete with respect to a topology induced by a discrete valuation v and if its residue field k is finite. Equivalently, a local field is a locally compact topological field with respect to a non-discrete topology. Sometimes, the real numbers R, and the complex numbers C are also defined to be local fields; this is the convention we will adopt below. Given a local field, the valuation defined on it can be of either of two types, each one corresponds to one of the two basic types of local fields: those in which the valuation is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and consequential conjectures about connections between number theory and geometry. Proposed by Robert Langlands, it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics."

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

In mathematics, the Brauer group of a field K is an abelian group whose elements are Morita equivalence classes of central simple algebras over K, with addition given by the tensor product of algebras. It was defined by the algebraist Richard Brauer.

In mathematics, a Galois module is a G-module, with G being the Galois group of some extension of fields. The term Galois representation is frequently used when the G-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for G-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory.

In number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension.

In mathematics, local class field theory, introduced by Helmut Hasse, is the study of abelian extensions of local fields; here, "local field" means a field which is complete with respect to an absolute value or a discrete valuation with a finite residue field: hence every local field is isomorphic (as a topological field) to the real numbers R, the complex numbers C, a finite extension of the p-adic numbersQp (where p is any prime number), or the field of formal Laurent series Fq((T)) over a finite field Fq.

In number theory, the Hasse norm theorem states that if L/K is a cyclic extension of number fields, then if a nonzero element of K is a local norm everywhere, then it is a global norm. Here to be a global norm means to be an element k of K such that there is an element l of L with ; in other words k is a relative norm of some element of the extension field L. To be a local norm means that for some prime p of K and some prime P of L lying over K, then k is a norm from LP; here the "prime" p can be an archimedean valuation, and the theorem is a statement about completions in all valuations, archimedean and non-archimedean.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

In mathematics, a field F is called quasi-algebraically closed if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper. The idea itself is attributed to Lang's advisor Emil Artin.

<span class="mw-page-title-main">Absolute Galois group</span>

In mathematics, the absolute Galois groupGK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

In mathematics, the Artin conductor is a number or ideal associated to a character of a Galois group of a local or global field, introduced by Emil Artin as an expression appearing in the functional equation of an Artin L-function.

Basic Number Theory is an influential book by André Weil, an exposition of algebraic number theory and class field theory with particular emphasis on valuation-theoretic methods. Based in part on a course taught at Princeton University in 1961–62, it appeared as Volume 144 in Springer's Grundlehren der mathematischen Wissenschaften series. The approach handles all 'A-fields' or global fields, meaning finite algebraic extensions of the field of rational numbers and of the field of rational functions of one variable with a finite field of constants. The theory is developed in a uniform way, starting with topological fields, properties of Haar measure on locally compact fields, the main theorems of adelic and idelic number theory, and class field theory via the theory of simple algebras over local and global fields. The word `basic’ in the title is closer in meaning to `foundational’ rather than `elementary’, and is perhaps best interpreted as meaning that the material developed is foundational for the development of the theories of automorphic forms, representation theory of algebraic groups, and more advanced topics in algebraic number theory. The style is austere, with a narrow concentration on a logically coherent development of the theory required, and essentially no examples.

References