Algebraic extension

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, an algebraic extension is a field extension L/K such that every element of the larger field L is algebraic over the smaller field K; that is, every element of L is a root of a non-zero polynomial with coefficients in K. [1] [2] A field extension that is not algebraic, is said to be transcendental, and must contain transcendental elements, that is, elements that are not algebraic. [3] [4]

Contents

The algebraic extensions of the field of the rational numbers are called algebraic number fields and are the main objects of study of algebraic number theory. Another example of a common algebraic extension is the extension of the real numbers by the complex numbers.

Some properties

All transcendental extensions are of infinite degree. This in turn implies that all finite extensions are algebraic. [5] The converse is not true however: there are infinite extensions which are algebraic. [6] For instance, the field of all algebraic numbers is an infinite algebraic extension of the rational numbers. [7]

Let E be an extension field of K, and aE. The smallest subfield of E that contains K and a is commonly denoted If a is algebraic over K, then the elements of K(a) can be expressed as polynomials in a with coefficients in K; that is, K(a) is also the smallest ring containing K and a. In this case, is a finite extension of K (it is a finite dimensional K-vector space), and all its elements are algebraic over K. [8] These properties do not hold if a is not algebraic. For example, and they are both infinite dimensional vector spaces over [9]

An algebraically closed field F has no proper algebraic extensions, that is, no algebraic extensions E with F < E. [10] An example is the field of complex numbers. Every field has an algebraic extension which is algebraically closed (called its algebraic closure), but proving this in general requires some form of the axiom of choice. [11]

An extension L/K is algebraic if and only if every sub K-algebra of L is a field.

Properties

The following three properties hold: [12]

  1. If E is an algebraic extension of F and F is an algebraic extension of K then E is an algebraic extension of K.
  2. If E and F are algebraic extensions of K in a common overfield C, then the compositum EF is an algebraic extension of K.
  3. If E is an algebraic extension of F and E > K > F then E is an algebraic extension of K.

These finitary results can be generalized using transfinite induction:

  1. The union of any chain of algebraic extensions over a base field is itself an algebraic extension over the same base field.

This fact, together with Zorn's lemma (applied to an appropriately chosen poset), establishes the existence of algebraic closures.

Generalizations

Model theory generalizes the notion of algebraic extension to arbitrary theories: an embedding of M into N is called an algebraic extension if for every x in N there is a formula p with parameters in M, such that p(x) is true and the set

is finite. It turns out that applying this definition to the theory of fields gives the usual definition of algebraic extension. The Galois group of N over M can again be defined as the group of automorphisms, and it turns out that most of the theory of Galois groups can be developed for the general case.

Relative algebraic closures

Given a field k and a field K containing k, one defines the relative algebraic closure of k in K to be the subfield of K consisting of all elements of K that are algebraic over k, that is all elements of K that are a root of some nonzero polynomial with coefficients in k.

See also

Notes

  1. Fraleigh (2014), Definition 31.1, p. 283.
  2. Malik, Mordeson, Sen (1997), Definition 21.1.23, p. 453.
  3. Fraleigh (2014), Definition 29.6, p. 267.
  4. Malik, Mordeson, Sen (1997), Theorem 21.1.8, p. 447.
  5. See also Hazewinkel et al. (2004), p. 3.
  6. Fraleigh (2014), Theorem 31.18, p. 288.
  7. Fraleigh (2014), Corollary 31.13, p. 287.
  8. Fraleigh (2014), Theorem 30.23, p. 280.
  9. Fraleigh (2014), Example 29.8, p. 268.
  10. Fraleigh (2014), Corollary 31.16, p. 287.
  11. Fraleigh (2014), Theorem 31.22, p. 290.
  12. Lang (2002) p.228

Related Research Articles

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In mathematics, a finite field or Galois field is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod p when p is a prime number.

In mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them.

In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

<span class="mw-page-title-main">Galois theory</span> Mathematical connection between field theory and group theory

In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to group theory, which makes them simpler and easier to understand.

In algebraic number theory, an algebraic integer is a complex number that is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial whose coefficients are integers. The set of all algebraic integers A is closed under addition, subtraction and multiplication and therefore is a commutative subring of the complex numbers.

In mathematics, the Abel–Ruffini theorem states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, general means that the coefficients of the equation are viewed and manipulated as indeterminates.

In mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, and are both transcendental extensions of

In abstract algebra, a subset of a field is algebraically independent over a subfield if the elements of do not satisfy any non-trivial polynomial equation with coefficients in .

In algebra, a monic polynomial is a non-zero univariate polynomial in which the leading coefficient is equal to 1. That is to say, a monic polynomial is one that can be written as

In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial. There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.

In field theory, the primitive element theorem states that every finite separable field extension is simple, i.e. generated by a single element. This theorem implies in particular that all algebraic number fields over the rational numbers, and all extensions in which both fields are finite, are simple.

In Galois theory, the inverse Galois problem concerns whether or not every finite group appears as the Galois group of some Galois extension of the rational numbers . This problem, first posed in the early 19th century, is unsolved.

<span class="mw-page-title-main">Multiplicative group</span>

In mathematics and group theory, the term multiplicative group refers to one of the following concepts:

In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory.

In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert in 1892, states that every finite set of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

References