Locally compact field

Last updated

In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. [1] These kinds of fields were originally introduced in p-adic analysis since the fields are locally compact topological spaces constructed from the norm on . The topology (and metric space structure) is essential because it allows one to construct analogues of algebraic number fields in the p-adic context.

Contents

Structure

Finite dimensional vector spaces

One of the useful structure theorems for vector spaces over locally compact fields is that the finite dimensional vector spaces have only an equivalence class of norm: the sup norm [2] pg. 58-59.

Finite field extensions

Given a finite field extension over a locally compact field , there is at most one unique field norm on extending the field norm ; that is,

for all which is in the image of . Note this follows from the previous theorem and the following trick: if are two equivalent norms, and

then for a fixed constant there exists an such that

for all since the sequence generated from the powers of converge to .

Finite Galois extensions

If the index of the extension is of degree and is a Galois extension, (so all solutions to the minimal polynomial of any is also contained in ) then the unique field norm can be constructed using the field norm [2] pg. 61. This is defined as

Note the n-th root is required in order to have a well-defined field norm extending the one over since given any in the image of its norm is

since it acts as scalar multiplication on the -vector space .

Examples

Finite fields

All finite fields are locally compact since they can be equipped with the discrete topology. In particular, any field with the discrete topology is locally compact since every point is the neighborhood of itself, and also the closure of the neighborhood, hence is compact.

Local fields

The main examples of locally compact fields are the p-adic rationals and finite extensions . Each of these are examples of local fields. Note the algebraic closure and its completion are not locally compact fields [2] pg. 72 with their standard topology.

Field extensions of Qp

Field extensions can be found by using Hensel's lemma. For example, has no solutions in since

only equals zero mod if , but has no solutions mod . Hence is a quadratic field extension.

See also

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

<span class="mw-page-title-main">Normed vector space</span> Vector space on which a distance is defined

In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. A norm is a generalization of the intuitive notion of "length" in the physical world. If is a vector space over , where is a field equal to or to , then a norm on is a map , typically denoted by , satisfying the following four axioms:

  1. Non-negativity: for every ,.
  2. Positive definiteness: for every , if and only if is the zero vector.
  3. Absolute homogeneity: for every and ,
  4. Triangle inequality: for every and ,

In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard orderings.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps:

In functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that

  1. Scalar multiplication in is continuous with respect to and the standard metric on or
  2. Addition in is continuous with respect to
  3. The metric is translation-invariant; that is, for all
  4. The metric space is complete.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

<span class="mw-page-title-main">Pontryagin duality</span> Duality for locally compact abelian groups

In mathematics, Pontryagin duality is a duality between locally compact abelian groups that allows generalizing Fourier transform to all such groups, which include the circle group, the finite abelian groups, and the additive group of the integers, the real numbers, and every finite-dimensional vector space over the reals or a p-adic field.

In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

In mathematics, a topological module is a module over a topological ring such that scalar multiplication and addition are continuous.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

In mathematics, the cylinder sets form a basis of the product topology on a product of sets; they are also a generating family of the cylinder σ-algebra.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, there are usually many different ways to construct a topological tensor product of two topological vector spaces. For Hilbert spaces or nuclear spaces there is a simple well-behaved theory of tensor products, but for general Banach spaces or locally convex topological vector spaces the theory is notoriously subtle.

In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields.

References

  1. Narici, Lawrence (1971), Functional Analysis and Valuation Theory, CRC Press, pp. 21–22, ISBN   9780824714840 .
  2. 1 2 3 Koblitz, Neil. p-adic Numbers, p-adic Analysis, and Zeta-Functions. pp. 57–74.