Topological ring

Last updated • 4 min readFrom Wikipedia, The Free Encyclopedia

In mathematics, a topological ring is a ring that is also a topological space such that both the addition and the multiplication are continuous as maps: [1]

Contents

where carries the product topology. That means is an additive topological group and a multiplicative topological semigroup.

Topological rings are fundamentally related to topological fields and arise naturally while studying them, since for example completion of a topological field may be a topological ring which is not a field. [2]

General comments

The group of units of a topological ring is a topological group when endowed with the topology coming from the embedding of into the product as However, if the unit group is endowed with the subspace topology as a subspace of it may not be a topological group, because inversion on need not be continuous with respect to the subspace topology. An example of this situation is the adele ring of a global field; its unit group, called the idele group, is not a topological group in the subspace topology. If inversion on is continuous in the subspace topology of then these two topologies on are the same.

If one does not require a ring to have a unit, then one has to add the requirement of continuity of the additive inverse, or equivalently, to define the topological ring as a ring that is a topological group (for ) in which multiplication is continuous, too.

Examples

Topological rings occur in mathematical analysis, for example as rings of continuous real-valued functions on some topological space (where the topology is given by pointwise convergence), or as rings of continuous linear operators on some normed vector space; all Banach algebras are topological rings. The rational, real, complex and -adic numbers are also topological rings (even topological fields, see below) with their standard topologies. In the plane, split-complex numbers and dual numbers form alternative topological rings. See hypercomplex numbers for other low-dimensional examples.

In commutative algebra, the following construction is common: given an ideal in a commutative ring the I-adic topology on is defined as follows: a subset of is open if and only if for every there exists a natural number such that This turns into a topological ring. The -adic topology is Hausdorff if and only if the intersection of all powers of is the zero ideal

The -adic topology on the integers is an example of an -adic topology (with ).

Completion

Every topological ring is a topological group (with respect to addition) and hence a uniform space in a natural manner. One can thus ask whether a given topological ring is complete. If it is not, then it can be completed: one can find an essentially unique complete topological ring that contains as a dense subring such that the given topology on equals the subspace topology arising from If the starting ring is metric, the ring can be constructed as a set of equivalence classes of Cauchy sequences in this equivalence relation makes the ring Hausdorff and using constant sequences (which are Cauchy) one realizes a (uniformly) continuous morphism (CM in the sequel) such that, for all CM where is Hausdorff and complete, there exists a unique CM such that If is not metric (as, for instance, the ring of all real-variable rational valued functions, that is, all functions endowed with the topology of pointwise convergence) the standard construction uses minimal Cauchy filters and satisfies the same universal property as above (see Bourbaki, General Topology, III.6.5).

The rings of formal power series and the -adic integers are most naturally defined as completions of certain topological rings carrying -adic topologies.

Topological fields

Some of the most important examples are topological fields. A topological field is a topological ring that is also a field, and such that inversion of non zero elements is a continuous function. The most common examples are the complex numbers and all its subfields, and the valued fields, which include the -adic fields.

See also

Citations

  1. Warner 1993, pp. 1–2, Def. 1.1.
  2. Warner 1989, p. 77, Ch. II.

Related Research Articles

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

In mathematical analysis, a metric space M is called complete if every Cauchy sequence of points in M has a limit that is also in M.

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each that are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space is said to be metrizable if there is a metric such that the topology induced by is Metrization theorems are theorems that give sufficient conditions for a topological space to be metrizable.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

In topology and related branches of mathematics, Tychonoff spaces and completely regular spaces are kinds of topological spaces. These conditions are examples of separation axioms. A Tychonoff space is any completely regular space that is also a Hausdorff space; there exist completely regular spaces that are not Tychonoff.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.

In topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras.

In mathematics, a topological abelian group, or TAG, is a topological group that is also an abelian group. That is, a TAG is both a group and a topological space, the group operations are continuous, and the group's binary operation is commutative.

In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.

In mathematics, a topological module is a module over a topological ring such that scalar multiplication and addition are continuous.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

In mathematics, a topological semigroup is a semigroup that is simultaneously a topological space, and whose semigroup operation is continuous.

In mathematics, a weak Hausdorff space or weakly Hausdorff space is a topological space where the image of every continuous map from a compact Hausdorff space into the space is closed. In particular, every Hausdorff space is weak Hausdorff. As a separation property, it is stronger than T1, which is equivalent to the statement that points are closed. Specifically, every weak Hausdorff space is a T1 space.

In mathematics, a complete field is a field equipped with a metric and complete with respect to that metric. Basic examples include the real numbers, the complex numbers, and complete valued fields.

In algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. These kinds of fields were originally introduced in p-adic analysis since the fields are locally compact topological spaces constructed from the norm on . The topology is essential because it allows one to construct analogues of algebraic number fields in the p-adic context.

In algebra, a linear topology on a left -module is a topology on that is invariant under translations and admits a fundamental system of neighborhood of that consists of submodules of If there is such a topology, is said to be linearly topologized. If is given a discrete topology, then becomes a topological -module with respect to a linear topology.

References