I-adic topology

Last updated

In commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers.

Contents

Definition

Let R be a commutative ring and M an R-module. Then each ideal 𝔞 of R determines a topology on M called the 𝔞-adic topology, characterized by the pseudometric

The family

is a basis for this topology. [1]

Properties

With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module. However, M need not be Hausdorff; it is Hausdorff if and only if

so that d becomes a genuine metric. Related to the usual terminology in topology, where a Hausdorff space is also called separated, in that case, the 𝔞-adic topology is called separated. [1]

By Krull's intersection theorem, if R is a Noetherian ring which is an integral domain or a local ring, it holds that for any proper ideal 𝔞 of R. Thus under these conditions, for any proper ideal 𝔞 of R and any R-module M, the 𝔞-adic topology on M is separated.

For a submodule N of M, the canonical homomorphism to M/N induces a quotient topology which coincides with the 𝔞-adic topology. The analogous result is not necessarily true for the submodule N itself: the subspace topology need not be the 𝔞-adic topology. However, the two topologies coincide when R is Noetherian and M finitely generated. This follows from the Artin-Rees lemma. [2]

Completion

When M is Hausdorff, M can be completed as a metric space; the resulting space is denoted by and has the module structure obtained by extending the module operations by continuity. It is also the same as (or canonically isomorphic to):

where the right-hand side is an inverse limit of quotient modules under natural projection. [3]

For example, let be a polynomial ring over a field k and 𝔞 = (x1, ..., xn) the (unique) homogeneous maximal ideal. Then , the formal power series ring over k in n variables. [4]

Closed submodules

As a consequence of the above, the 𝔞-adic closure of a submodule is [5] This closure coincides with N whenever R is 𝔞-adically complete and M is finitely generated. [6]

R is called Zariski with respect to 𝔞 if every ideal in R is 𝔞-adically closed. There is a characterization:

R is Zariski with respect to 𝔞 if and only if 𝔞 is contained in the Jacobson radical of R.

In particular a Noetherian local ring is Zariski with respect to the maximal ideal. [7]

Related Research Articles

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.

<span class="mw-page-title-main">Commutative ring</span> Algebraic structure

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

<span class="mw-page-title-main">Commutative algebra</span> Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module R, so that it consists of fractions such that the denominator s belongs to a given subset S of R. If S is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field of rational numbers from the ring of integers.

In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, or a module of finite type.

In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let A be a Noetherian local ring with maximal ideal m, and suppose a1, ..., an is a minimal set of generators of m. Then by Krull's principal ideal theorem n ≥ dim A, and A is defined to be regular if n = dim A.

In mathematics, a von Neumann regular ring is a ring R such that for every element a in R there exists an x in R with a = axa. One may think of x as a "weak inverse" of the element a; in general x is not uniquely determined by a. Von Neumann regular rings are also called absolutely flat rings, because these rings are characterized by the fact that every left R-module is flat.

In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).

In mathematics, ideal theory is the theory of ideals in commutative rings. While the notion of an ideal exists also for non-commutative rings, a much more substantial theory exists only for commutative rings

In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.

In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent. An algebraic completion is constructed in a manner analogous to completion of a metric space with Cauchy sequences, and agrees with it in the case when R has a metric given by a non-Archimedean absolute value.

In commutative algebra, an element b of a commutative ring B is said to be integral overA, a subring of B, if there are n ≥ 1 and aj in A such that

In mathematics, the Artin–Rees lemma is a basic result about modules over a Noetherian ring, along with results such as the Hilbert basis theorem. It was proved in the 1950s in independent works by the mathematicians Emil Artin and David Rees; a special case was known to Oscar Zariski prior to their work.

In commutative algebra, the support of a module M over a commutative ring A is the set of all prime ideals of A such that . It is denoted by . The support is, by definition, a subset of the spectrum of A.

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.

In mathematics, specifically in algebraic geometry, a formal scheme is a type of space which includes data about its surroundings. Unlike an ordinary scheme, a formal scheme includes infinitesimal data that, in effect, points in a direction off of the scheme. For this reason, formal schemes frequently appear in topics such as deformation theory. But the concept is also used to prove a theorem such as the theorem on formal functions, which is used to deduce theorems of interest for usual schemes.

In commutative algebra, a Zariski ring is a commutative Noetherian topological ring A whose topology is defined by an ideal contained in the Jacobson radical, the intersection of all maximal ideals. They were introduced by Oscar Zariski (1946) under the name "semi-local ring" which now means something different, and named "Zariski rings" by Pierre Samuel (1953). Examples of Zariski rings are noetherian local rings with the topology induced by the maximal ideal, and -adic completions of Noetherian rings.

This is a glossary of commutative algebra.

References

  1. 1 2 Singh 2011, p. 147.
  2. Singh 2011, p. 148.
  3. Singh 2011, pp. 148–151.
  4. Singh 2011, problem 8.16.
  5. Singh 2011, problem 8.4.
  6. Singh 2011, problem 8.8
  7. Atiyah & MacDonald 1969 , p. 114, exercise 6.

Sources