In mathematics, a finitely generated module is a module that has a finite generating set. A finitely generated module over a ring R may also be called a finite R-module, finite over R, [1] or a module of finite type.
Related concepts include finitely cogenerated modules, finitely presented modules, finitely related modules and coherent modules all of which are defined below. Over a Noetherian ring the concepts of finitely generated, finitely presented and coherent modules coincide.
A finitely generated module over a field is simply a finite-dimensional vector space, and a finitely generated module over the integers is simply a finitely generated abelian group.
The left R-module M is finitely generated if there exist a1, a2, ..., an in M such that for any x in M, there exist r1, r2, ..., rn in R with x = r1a1 + r2a2 + ... + rnan.
The set {a1, a2, ..., an} is referred to as a generating set of M in this case. A finite generating set need not be a basis, since it need not be linearly independent over R. What is true is: M is finitely generated if and only if there is a surjective R-linear map:
for some n (M is a quotient of a free module of finite rank).
If a set S generates a module that is finitely generated, then there is a finite generating set that is included in S, since only finitely many elements in S are needed to express the generators in any finite generating set, and these finitely many elements form a generating set. However, it may occur that S does not contain any finite generating set of minimal cardinality. For example the set of the prime numbers is a generating set of viewed as -module, and a generating set formed from prime numbers has at least two elements, while the singleton {1} is also a generating set.
In the case where the module M is a vector space over a field R, and the generating set is linearly independent, n is well-defined and is referred to as the dimension of M (well-defined means that any linearly independent generating set has n elements: this is the dimension theorem for vector spaces).
Any module is the union of the directed set of its finitely generated submodules.
A module M is finitely generated if and only if any increasing chain Mi of submodules with union M stabilizes: i.e., there is some i such that Mi = M. This fact with Zorn's lemma implies that every nonzero finitely generated module admits maximal submodules. If any increasing chain of submodules stabilizes (i.e., any submodule is finitely generated), then the module M is called a Noetherian module.
Every homomorphic image of a finitely generated module is finitely generated. In general, submodules of finitely generated modules need not be finitely generated. As an example, consider the ring R = Z[X1, X2, ...] of all polynomials in countably many variables. R itself is a finitely generated R-module (with {1} as generating set). Consider the submodule K consisting of all those polynomials with zero constant term. Since every polynomial contains only finitely many terms whose coefficients are non-zero, the R-module K is not finitely generated.
In general, a module is said to be Noetherian if every submodule is finitely generated. A finitely generated module over a Noetherian ring is a Noetherian module (and indeed this property characterizes Noetherian rings): A module over a Noetherian ring is finitely generated if and only if it is a Noetherian module. This resembles, but is not exactly Hilbert's basis theorem, which states that the polynomial ring R[X] over a Noetherian ring R is Noetherian. Both facts imply that a finitely generated commutative algebra over a Noetherian ring is again a Noetherian ring.
More generally, an algebra (e.g., ring) that is a finitely generated module is a finitely generated algebra. Conversely, if a finitely generated algebra is integral (over the coefficient ring), then it is finitely generated module. (See integral element for more.)
Let 0 → M′ → M → M′′ → 0 be an exact sequence of modules. Then M is finitely generated if M′, M′′ are finitely generated. There are some partial converses to this. If M is finitely generated and M′′ is finitely presented (which is stronger than finitely generated; see below), then M′ is finitely generated. Also, M is Noetherian (resp. Artinian) if and only if M′, M′′ are Noetherian (resp. Artinian).
Let B be a ring and A its subring such that B is a faithfully flat right A-module. Then a left A-module F is finitely generated (resp. finitely presented) if and only if the B-module B ⊗AF is finitely generated (resp. finitely presented). [2]
For finitely generated modules over a commutative ring R, Nakayama's lemma is fundamental. Sometimes, the lemma allows one to prove finite dimensional vector spaces phenomena for finitely generated modules. For example, if f : M → M is a surjective R-endomorphism of a finitely generated module M, then f is also injective, and hence is an automorphism of M. [3] This says simply that M is a Hopfian module. Similarly, an Artinian module M is coHopfian: any injective endomorphism f is also a surjective endomorphism. [4]
Any R-module is an inductive limit of finitely generated R-submodules. This is useful for weakening an assumption to the finite case (e.g., the characterization of flatness with the Tor functor).
An example of a link between finite generation and integral elements can be found in commutative algebras. To say that a commutative algebra A is a finitely generated ring over R means that there exists a set of elements G = {x1, ..., xn} of A such that the smallest subring of A containing G and R is A itself. Because the ring product may be used to combine elements, more than just R-linear combinations of elements of G are generated. For example, a polynomial ring R[x] is finitely generated by {1, x} as a ring, but not as a module. If A is a commutative algebra (with unity) over R, then the following two statements are equivalent: [5]
Let M be a finitely generated module over an integral domain A with the field of fractions K. Then the dimension is called the generic rank of M over A. This number is the same as the number of maximal A-linearly independent vectors in M or equivalently the rank of a maximal free submodule of M (cf. Rank of an abelian group ). Since , is a torsion module. When A is Noetherian, by generic freeness, there is an element f (depending on M) such that is a free -module. Then the rank of this free module is the generic rank of M.
Now suppose the integral domain A is generated as algebra over a field k by finitely many homogeneous elements of degrees . Suppose M is graded as well and let be the Poincaré series of M. By the Hilbert–Serre theorem, there is a polynomial F such that . Then is the generic rank of M. [6]
A finitely generated module over a principal ideal domain is torsion-free if and only if it is free. This is a consequence of the structure theorem for finitely generated modules over a principal ideal domain, the basic form of which says a finitely generated module over a PID is a direct sum of a torsion module and a free module. But it can also be shown directly as follows: let M be a torsion-free finitely generated module over a PID A and F a maximal free submodule. Let f be in A such that . Then is free since it is a submodule of a free module and A is a PID. But now is an isomorphism since M is torsion-free.
By the same argument as above, a finitely generated module over a Dedekind domain A (or more generally a semi-hereditary ring) is torsion-free if and only if it is projective; consequently, a finitely generated module over A is a direct sum of a torsion module and a projective module. A finitely generated projective module over a Noetherian integral domain has constant rank and so the generic rank of a finitely generated module over A is the rank of its projective part.
The following conditions are equivalent to M being finitely generated (f.g.):
From these conditions it is easy to see that being finitely generated is a property preserved by Morita equivalence. The conditions are also convenient to define a dual notion of a finitely cogenerated moduleM. The following conditions are equivalent to a module being finitely cogenerated (f.cog.):
Both f.g. modules and f.cog. modules have interesting relationships to Noetherian and Artinian modules, and the Jacobson radical J(M) and socle soc(M) of a module. The following facts illustrate the duality between the two conditions. For a module M:
Finitely cogenerated modules must have finite uniform dimension. This is easily seen by applying the characterization using the finitely generated essential socle. Somewhat asymmetrically, finitely generated modules do not necessarily have finite uniform dimension. For example, an infinite direct product of nonzero rings is a finitely generated (cyclic!) module over itself, however it clearly contains an infinite direct sum of nonzero submodules. Finitely generated modules do not necessarily have finite co-uniform dimension either: any ring R with unity such that R/J(R) is not a semisimple ring is a counterexample.
Another formulation is this: a finitely generated module M is one for which there is an epimorphism mapping Rk onto M :
Suppose now there is an epimorphism,
for a module M and free module F.
Over any ring R, coherent modules are finitely presented, and finitely presented modules are both finitely generated and finitely related. For a Noetherian ring R, finitely generated, finitely presented, and coherent are equivalent conditions on a module.
Some crossover occurs for projective or flat modules. A finitely generated projective module is finitely presented, and a finitely related flat module is projective.
It is true also that the following conditions are equivalent for a ring R:
Although coherence seems like a more cumbersome condition than finitely generated or finitely presented, it is nicer than them since the category of coherent modules is an abelian category, while, in general, neither finitely generated nor finitely presented modules form an abelian category.
In commutative algebra, the Krull dimension of a commutative ring R, named after Wolfgang Krull, is the supremum of the lengths of all chains of prime ideals. The Krull dimension need not be finite even for a Noetherian ring. More generally the Krull dimension can be defined for modules over possibly non-commutative rings as the deviation of the poset of submodules.
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.
In mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below.
In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.
In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion free modules. Formally, a module M over a ring R is flat if taking the tensor product over R with M preserves exact sequences. A module is faithfully flat if taking the tensor product with a sequence produces an exact sequence if and only if the original sequence is exact.
In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself. Both concepts are named for Emil Artin.
In abstract algebra, a Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion.
In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.
In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many primary ideals. The theorem was first proven by Emanuel Lasker (1905) for the special case of polynomial rings and convergent power series rings, and was proven in its full generality by Emmy Noether (1921).
In mathematics, more specifically abstract algebra and commutative algebra, Nakayama's lemma — also known as the Krull–Azumaya theorem — governs the interaction between the Jacobson radical of a ring and its finitely generated modules. Informally, the lemma immediately gives a precise sense in which finitely generated modules over a commutative ring behave like vector spaces over a field. It is an important tool in algebraic geometry, because it allows local data on algebraic varieties, in the form of modules over local rings, to be studied pointwise as vector spaces over the residue field of the ring.
In mathematics, specifically in ring theory, a torsion element is an element of a module that yields zero when multiplied by some non-zero-divisor of the ring. The torsion submodule of a module is the submodule formed by the torsion elements. A torsion module is a module that equals its torsion submodule. A module is torsion-free if its torsion submodule comprises only the zero element.
In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finitely generated modules over a principal ideal domain (PID) can be uniquely decomposed in much the same way that integers have a prime factorization. The result provides a simple framework to understand various canonical form results for square matrices over fields.
In mathematics, a Prüfer domain is a type of commutative ring that generalizes Dedekind domains in a non-Noetherian context. These rings possess the nice ideal and module theoretic properties of Dedekind domains, but usually only for finitely generated modules. Prüfer domains are named after the German mathematician Heinz Prüfer.
In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring.
Module theory is the branch of mathematics in which modules are studied. This is a glossary of some terms of the subject.
In abstract algebra, a module M over a ring R is called torsionless if it can be embedded into some direct product RI. Equivalently, M is torsionless if each non-zero element of M has non-zero image under some R-linear functional f:
In abstract algebra, a uniserial moduleM is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M, either or . A module is called a serial module if it is a direct sum of uniserial modules. A ring R is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself. Left uniserial and left serial rings are defined in an analogous way, and are in general distinct from their right counterparts.
This is a glossary of commutative algebra.