Finitely generated algebra

Last updated

In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra A over a field K where there exists a finite set of elements a1,...,an of A such that every element of A can be expressed as a polynomial in a1,...,an, with coefficients in K.

Contents

Equivalently, there exist elements such that the evaluation homomorphism at

is surjective; thus, by applying the first isomorphism theorem, .

Conversely, for any ideal is a -algebra of finite type, indeed any element of is a polynomial in the cosets with coefficients in . Therefore, we obtain the following characterisation of finitely generated -algebras [1]

is a finitely generated -algebra if and only if it is isomorphic to a quotient ring of the type by an ideal .

If it is necessary to emphasize the field K then the algebra is said to be finitely generated over K. Algebras that are not finitely generated are called infinitely generated.

Examples

Properties

Relation with affine varieties

Finitely generated reduced commutative algebras are basic objects of consideration in modern algebraic geometry, where they correspond to affine algebraic varieties; for this reason, these algebras are also referred to as (commutative) affine algebras. More precisely, given an affine algebraic set we can associate a finitely generated -algebra

called the affine coordinate ring of ; moreover, if is a regular map between the affine algebraic sets and , we can define a homomorphism of -algebras

then, is a contravariant functor from the category of affine algebraic sets with regular maps to the category of reduced finitely generated -algebras: this functor turns out [2] to be an equivalence of categories

and, restricting to affine varieties (i.e. irreducible affine algebraic sets),

Finite algebras vs algebras of finite type

We recall that a commutative -algebra is a ring homomorphism ; the -module structure of is defined by

An -algebra is called finite if it is finitely generated as an -module, i.e. there is a surjective homomorphism of -modules

Again, there is a characterisation of finite algebras in terms of quotients [3]

An -algebra is finite if and only if it is isomorphic to a quotient by an -submodule .

By definition, a finite -algebra is of finite type, but the converse is false: the polynomial ring is of finite type but not finite.

Finite algebras and algebras of finite type are related to the notions of finite morphisms and morphisms of finite type.

Related Research Articles

In mathematics, an associative algebraA over a commutative ring K is a ring A together with a ring homomorphism from K into the center of A. This is thus an algebraic structure with an addition, a multiplication, and a scalar multiplication. The addition and multiplication operations together give A the structure of a ring; the addition and scalar multiplication operations together give A the structure of a module or vector space over K. In this article we will also use the term K-algebra to mean an associative algebra over K. A standard first example of a K-algebra is a ring of square matrices over a commutative ring K, with the usual matrix multiplication.

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

<span class="mw-page-title-main">Affine variety</span> Algebraic variety defined within an affine space

In algebraic geometry, an affine algebraic set is the set of the common zeros over an algebraically closed field k of some family of polynomials in the polynomial ring An affine variety or affine algebraic variety, is an affine algebraic set such that the ideal generated by the defining polynomials is prime.

In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In algebra, a field k is perfect if any one of the following equivalent conditions holds:

In commutative algebra and field theory, the Frobenius endomorphism is a special endomorphism of commutative rings with prime characteristic p, an important class that includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and the biregular maps are the isomorphisms of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the concepts of rational and birational maps are widely used as well; they are partial functions that are defined locally by rational fractions instead of polynomials.

In algebra, Zariski's lemma, proved by Oscar Zariski, states that, if a field K is finitely generated as an associative algebra over another field k, then K is a finite field extension of k.

In algebraic geometry, the main theorem of elimination theory states that every projective scheme is proper. A version of this theorem predates the existence of scheme theory. It can be stated, proved, and applied in the following more classical setting. Let k be a field, denote by the n-dimensional projective space over k. The main theorem of elimination theory is the statement that for any n and any algebraic variety V defined over k, the projection map sends Zariski-closed subsets to Zariski-closed subsets.

In mathematics, a derivation of a commutative ring is called a locally nilpotent derivation (LND) if every element of is annihilated by some power of .

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

In abstract algebra, an -algebra is finite if it is finitely generated as an -module. An -algebra can be thought as a homomorphism of rings , in this case is called a finite morphism if is a finite -algebra.

References

  1. Kemper, Gregor (2009). A Course in Commutative Algebra. Springer. p. 8. ISBN   978-3-642-03545-6.
  2. Görtz, Ulrich; Wedhorn, Torsten (2010). Algebraic Geometry I. Schemes With Examples and Exercises. Springer. p. 19. doi:10.1007/978-3-8348-9722-0. ISBN   978-3-8348-0676-5.
  3. Atiyah, Michael Francis; Macdonald, Ian Grant (1994). Introduction to commutative algebra. CRC Press. p. 21. ISBN   9780201407518.

See also