This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
(Learn how and when to remove this template message) |

In mathematics, a **coefficient** is a multiplicative factor in some term of a polynomial, a series, or any expression; it is usually a number, but may be any expression (including variables such as a, b and c).^{ [1] }^{ [2] }^{ [3] } In the latter case, the variables appearing in the coefficients are often called parameters, and must be clearly distinguished from the other variables.

For example, in

the first two terms have the coefficients 7 and −3, respectively. The third term 1.5 is a constant coefficient. The final term does not have any explicitly-written coefficient factor that would not change the term; the coefficient is thus taken to be 1 (since variables without number have a coefficient of 1).^{ [2] }

In many scenarios, coefficients are numbers (as is the case for each term of the above example), although they could be parameters of the problem—or any expression in these parameters. In such a case, one must clearly distinguish between symbols representing variables and symbols representing parameters. Following René Descartes, the variables are often denoted by x, y, ..., and the parameters by a, b, c, ..., but this is not always the case. For example, if y is considered a parameter in the above expression, then the coefficient of x would be −3*y*, and the constant coefficient (always with respect to x) would be 1.5 + *y*.

When one writes

it is generally assumed that x is the only variable, and that a, b and c are parameters; thus the constant coefficient is c in this case.

Similarly, any polynomial in one variable x can be written as

for some positive integer , where are coefficients; to allow this kind of expression in all cases, one must allow introducing terms with 0 as coefficient. For the largest with (if any), is called the **leading coefficient** of the polynomial. For example, the leading coefficient of the polynomial

is 4.

Some specific coefficients that occur frequently in mathematics have dedicated names. For example, the binomial coefficients occur in the expanded form of , and are tabulated in Pascal's triangle.

In linear algebra, a system of linear equations is associated with a coefficient matrix, which is used in Cramer's rule to find a solution to the system.

The **leading entry** (sometimes *leading coefficient*) of a row in a matrix is the first nonzero entry in that row. So, for example, given the matrix described as follows:

the leading coefficient of the first row is 1; that of the second row is 2; that of the third row is 4, while the last row does not have a leading coefficient.

Though coefficients are frequently viewed as constants in elementary algebra, they can also be viewed as variables as the context broadens. For example, the coordinates of a vector in a vector space with basis , are the coefficients of the basis vectors in the expression

In mathematics, an **equation** is a statement that asserts the equality of two expressions, which are connected by the equals sign "=". The word *equation* and its cognates in other languages may have subtly different meanings; for example, in French an *équation* is defined as containing one or more variables, while in English, any equality is an equation.

In mathematics, a **polynomial** is an expression consisting of variables and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables. An example of a polynomial of a single indeterminate *x* is *x*^{2} − 4*x* + 7. An example in three variables is *x*^{3} + 2*xyz*^{2} − *yz* + 1.

In mathematics, the **discriminant** of a polynomial is a quantity that depends on the coefficients and determines various properties of the roots. It is generally defined as a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. It is often denoted by the symbol .

In mathematics, a **constant term** is a term in an algebraic expression that has a value that is constant or cannot change, because it does not contain any modifiable variables. For example, in the quadratic polynomial

In linear algebra, the **Cayley–Hamilton theorem** states that every square matrix over a commutative ring satisfies its own characteristic equation.

In algebra, a **quadratic function**, a **quadratic polynomial**, a **polynomial of degree 2**, or simply a **quadratic**, is a polynomial function with one or more variables in which the highest-degree term is of the second degree.

In numerical analysis, **polynomial interpolation** is the interpolation of a given data set by the polynomial of lowest possible degree that passes through the points of the dataset.

In linear algebra, the **characteristic polynomial** of a square matrix is a polynomial which is invariant under matrix similarity and has the eigenvalues as roots. It has the determinant and the trace of the matrix among its coefficients. The **characteristic polynomial** of an endomorphism of vector spaces of finite dimension is the characteristic polynomial of the matrix of the endomorphism over any base; it does not depend on the choice of a basis. The **characteristic equation**, also known as the **determinantal equation**, is the equation obtained by equating to zero the characteristic polynomial.

In mathematics, a **monomial** is, roughly speaking, a polynomial which has only one term. Two definitions of a monomial may be encountered:

- A monomial, also called
**power product**, is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. For example, is a monomial. The constant 1 is a monomial, being equal to the empty product and to x^{0}for any variable x. If only a single variable x is considered, this means that a monomial is either 1 or a power*x*^{n}of x, with n a positive integer. If several variables are considered, say, then each can be given an exponent, so that any monomial is of the form with non-negative integers. - A monomial is a monomial in the first sense multiplied by a nonzero constant, called the coefficient of the monomial. A monomial in the first sense is a special case of a monomial in the second sense, where the coefficient is 1. For example, in this interpretation and are monomials.

In mathematics, especially in the field of algebra, a **polynomial ring** or **polynomial algebra** is a ring formed from the set of polynomials in one or more indeterminates with coefficients in another ring, often a field.

In mathematics, a **linear differential equation** is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, an **algebraic equation** or **polynomial equation** is an equation of the form

In mathematics, and/or particularly in formal algebra, an **indeterminate** is a symbol that is treated as a variable, does not stand for anything else except itself, and is often used as a placeholder in objects such as polynomials and formal power series. In particular:

A **Savitzky–Golay filter** is a digital filter that can be applied to a set of digital data points for the purpose of smoothing the data, that is, to increase the precision of the data without distorting the signal tendency. This is achieved, in a process known as convolution, by fitting successive sub-sets of adjacent data points with a low-degree polynomial by the method of linear least squares. When the data points are equally spaced, an analytical solution to the least-squares equations can be found, in the form of a single set of "convolution coefficients" that can be applied to all data sub-sets, to give estimates of the smoothed signal, at the central point of each sub-set. The method, based on established mathematical procedures, was popularized by Abraham Savitzky and Marcel J. E. Golay, who published tables of convolution coefficients for various polynomials and sub-set sizes in 1964. Some errors in the tables have been corrected. The method has been extended for the treatment of 2- and 3-dimensional data.

In mathematics, the **resultant** of two polynomials is a polynomial expression of their coefficients, which is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the **eliminant**.

In mathematics, a **variable** is a symbol which functions as a placeholder for varying expression or quantities, and is often used to represent an arbitrary element of a set. In addition to numbers, variables are commonly used to represent vectors, matrices and functions.

In mathematics, an **algebraic expression** is an expression built up from integer constants, variables, and the algebraic operations. For example, 3*x*^{2} − 2*xy* + *c* is an algebraic expression. Since taking the square root is the same as raising to the power 1/2,

In mathematics, a system of equations is considered **overdetermined** if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.

**Zhegalkin****polynomials** form one of many possible representations of the operations of Boolean algebra. Introduced by the Russian mathematician Ivan Ivanovich Zhegalkin in 1927, they are the polynomial ring over the integers modulo 2. The resulting degeneracies of modular arithmetic result in Zhegalkin polynomials being simpler than ordinary polynomials, requiring neither coefficients nor exponents. Coefficients are redundant because 1 is the only nonzero coefficient. Exponents are redundant because in arithmetic mod 2, *x*^{2} = *x*. Hence a polynomial such as 3*x*^{2}*y*^{5}*z* is congruent to, and can therefore be rewritten as, *xyz*.

In mathematics, **Manin matrices**, named after Yuri Manin who introduced them around 1987–88, are a class of matrices with elements in a not-necessarily commutative ring, which in a certain sense behave like matrices whose elements commute. In particular there is natural definition of the determinant for them and most linear algebra theorems like Cramer's rule, Cayley–Hamilton theorem, etc. hold true for them. Any matrix with commuting elements is a Manin matrix. These matrices have applications in representation theory in particular to Capelli's identity, Yangian and quantum integrable systems.

- ↑ "Compendium of Mathematical Symbols".
*Math Vault*. 2020-03-01. Retrieved 2020-08-15. - 1 2 "Definition of Coefficient".
*www.mathsisfun.com*. Retrieved 2020-08-15. - ↑ Weisstein, Eric W. "Coefficient".
*mathworld.wolfram.com*. Retrieved 2020-08-15.

- Sabah Al-hadad and C.H. Scott (1979)
*College Algebra with Applications*, page 42, Winthrop Publishers, Cambridge Massachusetts ISBN 0-87626-140-3 . - Gordon Fuller, Walter L Wilson, Henry C Miller, (1982)
*College Algebra*, 5th edition, page 24, Brooks/Cole Publishing, Monterey California ISBN 0-534-01138-1 .

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.