Variable (mathematics)

Last updated

In mathematics, a variable (from Latin variabilis , "changeable") is a symbol that represents a mathematical object. A variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set. [1]

Contents

Algebraic computations with variables as if they were explicit numbers solve a range of problems in a single computation. For example, the quadratic formula solves any quadratic equation by substituting the numeric values of the coefficients of that equation for the variables that represent them in the quadratic formula. In mathematical logic, a variable is either a symbol representing an unspecified term of the theory (a meta-variable), or a basic object of the theory that is manipulated without referring to its possible intuitive interpretation.

History

In ancient works such as Euclid's Elements, single letters refer to geometric points and shapes. In the 7th century, Brahmagupta used different colours to represent the unknowns in algebraic equations in the Brāhmasphuṭasiddhānta . One section of this book is called "Equations of Several Colours". [2]

At the end of the 16th century, François Viète introduced the idea of representing known and unknown numbers by letters, nowadays called variables, and the idea of computing with them as if they were numbers—in order to obtain the result by a simple replacement. Viète's convention was to use consonants for known values, and vowels for unknowns. [3]

In 1637, René Descartes "invented the convention of representing unknowns in equations by x, y, and z, and knowns by a, b, and c". [4] Contrarily to Viète's convention, Descartes' is still commonly in use. The history of the letter x in math was discussed in an 1887 Scientific American article. [5]

Starting in the 1660s, Isaac Newton and Gottfried Wilhelm Leibniz independently developed the infinitesimal calculus, which essentially consists of studying how an infinitesimal variation of a variable quantity induces a corresponding variation of another quantity which is a function of the first variable. Almost a century later, Leonhard Euler fixed the terminology of infinitesimal calculus, and introduced the notation y = f(x) for a function f, its variablex and its value y. Until the end of the 19th century, the word variable referred almost exclusively to the arguments and the values of functions.

In the second half of the 19th century, it appeared that the foundation of infinitesimal calculus was not formalized enough to deal with apparent paradoxes such as a nowhere differentiable continuous function. To solve this problem, Karl Weierstrass introduced a new formalism consisting of replacing the intuitive notion of limit by a formal definition. The older notion of limit was "when the variablex varies and tends toward a, then f(x) tends toward L", without any accurate definition of "tends". Weierstrass replaced this sentence by the formula

in which none of the five variables is considered as varying.

This static formulation led to the modern notion of variable, which is simply a symbol representing a mathematical object that either is unknown, or may be replaced by any element of a given set (e.g., the set of real numbers).

Notation

Variables are generally denoted by a single letter, most often from the Latin alphabet and less often from the Greek, which may be lowercase or capitalized. The letter may be followed by a subscript: a number (as in x2), another variable (xi), a word or abbreviation of a word (xtotal) or a mathematical expression (x2i + 1). Under the influence of computer science, some variable names in pure mathematics consist of several letters and digits. Following René Descartes (1596–1650), letters at the beginning of the alphabet such as a, b, c are commonly used for known values and parameters, and letters at the end of the alphabet such as (x, y, z) are commonly used for unknowns and variables of functions. [6] In printed mathematics, the norm is to set variables and constants in an italic typeface. [7]

For example, a general quadratic function is conventionally written as , where a, b and c are parameters (also called constants, because they are constant functions), while x is the variable of the function. A more explicit way to denote this function is , which clarifies the function-argument status of x and the constant status of a, b and c. Since c occurs in a term that is a constant function of x, it is called the constant term. [8]

Specific branches and applications of mathematics have specific naming conventions for variables. Variables with similar roles or meanings are often assigned consecutive letters or the same letter with different subscripts. For example, the three axes in 3D coordinate space are conventionally called x, y, and z. In physics, the names of variables are largely determined by the physical quantity they describe, but various naming conventions exist. A convention often followed in probability and statistics is to use X, Y, Z for the names of random variables, keeping x, y, z for variables representing corresponding better-defined values.

Specific kinds of variables

It is common for variables to play different roles in the same mathematical formula, and names or qualifiers have been introduced to distinguish them. For example, the general cubic equation

is interpreted as having five variables: four, a, b, c, d, which are taken to be given numbers and the fifth variable, x, is understood to be an unknown number. To distinguish them, the variable x is called an unknown, and the other variables are called parameters or coefficients , or sometimes constants, although this last terminology is incorrect for an equation, and should be reserved for the function defined by the left-hand side of this equation.

In the context of functions, the term variable refers commonly to the arguments of the functions. This is typically the case in sentences like "function of a real variable", "x is the variable of the function f: xf(x)", "f is a function of the variable x" (meaning that the argument of the function is referred to by the variable x).

In the same context, variables that are independent of x define constant functions and are therefore called constant. For example, a constant of integration is an arbitrary constant function that is added to a particular antiderivative to obtain the other antiderivatives. Because of the strong relationship between polynomials and polynomial functions, the term "constant" is often used to denote the coefficients of a polynomial, which are constant functions of the indeterminates.

This use of "constant" as an abbreviation of "constant function" must be distinguished from the normal meaning of the word in mathematics. A constant, or mathematical constant is a well and unambiguously defined number or other mathematical object, as, for example, the numbers 0, 1, π and the identity element of a group. Since a variable may represent any mathematical object, a letter that represents a constant is often called a variable. This is, in particular, the case of e and π, even when they represent Euler's number and 3.14159...

Other specific names for variables are:

All these denominations of variables are of semantic nature, and the way of computing with them (syntax) is the same for all.

Dependent and independent variables

In calculus and its application to physics and other sciences, it is rather common to consider a variable, say y, whose possible values depend on the value of another variable, say x. In mathematical terms, the dependent variable y represents the value of a function of x. To simplify formulas, it is often useful to use the same symbol for the dependent variable y and the function mapping x onto y. For example, the state of a physical system depends on measurable quantities such as the pressure, the temperature, the spatial position, ..., and all these quantities vary when the system evolves, that is, they are function of the time. In the formulas describing the system, these quantities are represented by variables which are dependent on the time, and thus considered implicitly as functions of the time.

Therefore, in a formula, a dependent variable is a variable that is implicitly a function of another (or several other) variables. An independent variable is a variable that is not dependent. [9]

The property of a variable to be dependent or independent depends often of the point of view and is not intrinsic. For example, in the notation f(x, y, z), the three variables may be all independent and the notation represents a function of three variables. On the other hand, if y and z depend on x (are dependent variables) then the notation represents a function of the single independent variablex. [10]

Examples

If one defines a function f from the real numbers to the real numbers by

then x is a variable standing for the argument of the function being defined, which can be any real number.

In the identity

the variable i is a summation variable which designates in turn each of the integers 1, 2, ..., n (it is also called index because its variation is over a discrete set of values) while n is a parameter (it does not vary within the formula).

In the theory of polynomials, a polynomial of degree 2 is generally denoted as ax2 + bx + c, where a, b and c are called coefficients (they are assumed to be fixed, i.e., parameters of the problem considered) while x is called a variable. When studying this polynomial for its polynomial function this x stands for the function argument. When studying the polynomial as an object in itself, x is taken to be an indeterminate, and would often be written with a capital letter instead to indicate this status.

Example: the ideal gas law

Consider the equation describing the ideal gas law,

This equation would generally be interpreted to have four variables, and one constant. The constant is , the Boltzmann constant. One of the variables, , the number of particles, is a positive integer (and therefore a discrete variable), while the other three, and , for pressure, volume and temperature, are continuous variables.

One could rearrange this equation to obtain as a function of the other variables,

Then , as a function of the other variables, is the dependent variable, while its arguments, and , are independent variables. One could approach this function more formally and think about its domain and range: in function notation, here is a function .

However, in an experiment, in order to determine the dependence of pressure on a single one of the independent variables, it is necessary to fix all but one of the variables, say . This gives a function

where now and are also regarded as constants. Mathematically, this constitutes a partial application of the earlier function .

This illustrates how independent variables and constants are largely dependent on the point of view taken. One could even regard as a variable to obtain a function

Moduli spaces

Considering constants and variables can lead to the concept of moduli spaces. For illustration, consider the equation for a parabola,

where and are all considered to be real. The set of points in the 2D plane satisfying this equation trace out the graph of a parabola. Here, and are regarded as constants, which specify the parabola, while and are variables.

Then instead regarding and as variables, we observe that each set of 3-tuples corresponds to a different parabola. That is, they specify coordinates on the 'space of parabolas': this is known as a moduli space of parabolas.

Conventional variable names

See also

Related Research Articles

In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.

In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2yz + 1.

A parameter, generally, is any characteristic that can help in defining or classifying a particular system. That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc.

In algebra, a quadratic equation is any equation that can be rearranged in standard form as

In mathematics, a coefficient is a multiplicative factor involved in some term of a polynomial, a series, or an expression. It may be a number (dimensionless), in which case it is known as a numerical factor. It may also be a constant with units of measurement, in which it is known as a constant multiplier. In general, coefficients may be any expression. When the combination of variables and constants is not necessarily involved in a product, it may be called a parameter.

In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.

<span class="mw-page-title-main">Quadratic formula</span> Formula that provides the solutions to a quadratic equation

In elementary algebra, the quadratic formula is a formula that provides the two solutions, or roots, to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as completing the square.

In mathematics, the term linear is used in two distinct senses for two different properties:

In mathematics, a recurrence relation is an equation according to which the th term of a sequence of numbers is equal to some combination of the previous terms. Often, only previous terms of the sequence appear in the equation, for a parameter that is independent of ; this number is called the order of the relation. If the values of the first numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation.

<span class="mw-page-title-main">Function (mathematics)</span> Association of one output to each input

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.

<span class="mw-page-title-main">Quadratic function</span> Polynomial function of degree two

In mathematics, a quadratic polynomial is a polynomial of degree two in one or more variables. A quadratic function is the polynomial function defined by a quadratic polynomial. Before the 20th century, the distinction was unclear between a polynomial and its associated polynomial function; so "quadratic polynomial" and "quadratic function" were almost synonymous. This is still the case in many elementary courses, where both terms are often abbreviated as "quadratic".

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

<span class="mw-page-title-main">Completing the square</span> Method for solving quadratic equations

In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form

<span class="mw-page-title-main">Quartic function</span> Polynomial function of degree four

In algebra, a quartic function is a function of the form

In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form

In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and

Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.

In mathematics, the word constant conveys multiple meanings. As an adjective, it refers to non-variance ; as a noun, it has two different meanings:

<span class="mw-page-title-main">Linear function (calculus)</span> Polynomial function of degree at most one

In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph is a non-vertical line in the plane. The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change in the input.

Most of the terms listed in Wikipedia glossaries are already defined and explained within Wikipedia itself. However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones.

References

  1. Stover & Weisstein.
  2. Tabak 2014 , p.  40.
  3. Fraleigh 1989 , p.  276.
  4. Sorell 2000 , p. 19.
  5. Scientific American. Munn & Company. September 3, 1887. p. 148.
  6. Edwards Art. 4
  7. Hosch 2010 , p.  71 .
  8. Foerster 2006 , p.  18.
  9. Edwards Art. 5
  10. Edwards Art. 6
  11. Weisstein, Eric W. "Sum". mathworld.wolfram.com. Retrieved February 14, 2022.

Bibliography