Interpretation (model theory)

Last updated

In model theory, interpretation of a structure M in another structure N (typically of a different signature) is a technical notion that approximates the idea of representing M inside N. For example, every reduct or definitional expansion of a structure N has an interpretation in N.

Contents

Many model-theoretic properties are preserved under interpretability. For example, if the theory of N is stable and M is interpretable in N, then the theory of M is also stable.

Note that in other areas of mathematical logic, the term "interpretation" may refer to a structure, [1] [2] rather than being used in the sense defined here. These two notions of "interpretation" are related but nevertheless distinct. Similarly, "interpretability" may refer to a related but distinct notion about representation and provability of sentences between theories.

Definition

An interpretation of a structure M in a structure Nwith parameters (or without parameters, respectively) is a pair where n is a natural number and is a surjective map from a subset of Nn onto M such that the -preimage (more precisely the -preimage) of every set X  Mk definable in M by a first-order formula without parameters is definable (in N) by a first-order formula with parameters (or without parameters, respectively)[ clarification needed ]. Since the value of n for an interpretation is often clear from context, the map itself is also called an interpretation.

To verify that the preimage of every definable (without parameters) set in M is definable in N (with or without parameters), it is sufficient to check the preimages of the following definable sets:

In model theory the term definable often refers to definability with parameters; if this convention is used, definability without parameters is expressed by the term 0-definable. Similarly, an interpretation with parameters may be referred to as simply an interpretation, and an interpretation without parameters as a 0-interpretation.

Bi-interpretability

If L, M and N are three structures, L is interpreted in M, and M is interpreted in N, then one can naturally construct a composite interpretation of L in N. If two structures M and N are interpreted in each other, then by combining the interpretations in two possible ways, one obtains an interpretation of each of the two structures in itself. This observation permits one to define an equivalence relation among structures, reminiscent of the homotopy equivalence among topological spaces.

Two structures M and N are bi-interpretable if there exists an interpretation of M in N and an interpretation of N in M such that the composite interpretations of M in itself and of N in itself are definable in M and in N, respectively (the composite interpretations being viewed as operations on M and on N).

Example

The partial map f from Z × Z onto Q that maps (x, y) to x/y if y ≠ 0 provides an interpretation of the field Q of rational numbers in the ring Z of integers (to be precise, the interpretation is (2, f)). In fact, this particular interpretation is often used to define the rational numbers. To see that it is an interpretation (without parameters), one needs to check the following preimages of definable sets in Q:

Related Research Articles

In logic and computer science, the Boolean satisfiability problem asks if there exists an interpretation that satisfies a given Boolean formula. In other words, it asks can a Boolean formula's variables be assigned TRUE or FALSE to make the formula TRUE. If this is the case, the formula is called satisfiable, else it is unsatisfiable. For example, the formula "a AND NOT b" is satisfiable because one can find the values a = TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND NOT a" is unsatisfiable.

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x, if x is a man, then x is mortal"; where "for all x" is a quantifier, x is a variable, and "... is a man" and "... is mortal" are predicates. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

<span class="mw-page-title-main">Quasigroup</span> Magma obeying the Latin square property

In mathematics, especially in abstract algebra, a quasigroup is an algebraic structure that resembles a group in the sense that "division" is always possible. Quasigroups differ from groups mainly in that the associative and identity element properties are optional. In fact, a nonempty associative quasigroup is a group.

In mathematics, a surjective function (also known as surjection, or onto function ) is a function f such that, for every element y of the function's codomain, there exists at least one element x in the function's domain such that f(x) = y. In other words, for a function f : XY, the codomain Y is the image of the function's domain X. It is not required that x be unique; the function f may map one or more elements of X to the same element of Y.

In mathematics, a unique factorization domain (UFD) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is an integral domain in which every non-zero non-unit element can be written as a product of irreducible elements, uniquely up to order and units.

In mathematics, a Diophantine equation is an equation of the form P(x1, ..., xj, y1, ..., yk) = 0 (usually abbreviated P(x, y) = 0) where P(x, y) is a polynomial with integer coefficients, where x1, ..., xj indicate parameters and y1, ..., yk indicate unknowns.

In model theory, a branch of mathematical logic, two structures M and N of the same signature σ are called elementarily equivalent if they satisfy the same first-order σ-sentences.

In geometry, the Hessian curve is a plane curve similar to folium of Descartes. It is named after the German mathematician Otto Hesse. This curve was suggested for application in elliptic curve cryptography, because arithmetic in this curve representation is faster and needs less memory than arithmetic in standard Weierstrass form.

In structural engineering, the direct stiffness method, also known as the matrix stiffness method, is a structural analysis technique particularly suited for computer-automated analysis of complex structures including the statically indeterminate type. It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the nodes. The material stiffness properties of these elements are then, through linear algebra, compiled into a single matrix equation which governs the behaviour of the entire idealized structure. The structure’s unknown displacements and forces can then be determined by solving this equation. The direct stiffness method forms the basis for most commercial and free source finite element software.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,..., xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.

A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions.

In mathematics, specifically transcendental number theory, the six exponentials theorem is a result that, given the right conditions on the exponents, guarantees the transcendence of at least one of a set of six exponentials.

<span class="mw-page-title-main">Edwards curve</span> Family of elliptic curves used in cryptography

In mathematics, the Edwards curves are a family of elliptic curves studied by Harold Edwards in 2007. The concept of elliptic curves over finite fields is widely used in elliptic curve cryptography. Applications of Edwards curves to cryptography were developed by Daniel J. Bernstein and Tanja Lange: they pointed out several advantages of the Edwards form in comparison to the more well known Weierstrass form.

In mathematics, twisted Hessian curves are a generalization of Hessian curves; they were introduced in elliptic curve cryptography to speed up the addition and doubling formulas and to have strongly unified arithmetic. In some operations, it is close in speed to Edwards curves. Twisted Hessian curves were introduced by Bernstein, Lange, and Kohel.

<span class="mw-page-title-main">Doubling-oriented Doche–Icart–Kohel curve</span> Type of elliptic curve

In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of the Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably. It was introduced by Christophe Doche, Thomas Icart, and David R. Kohel in Efficient Scalar Multiplication by Isogeny Decompositions.

<span class="mw-page-title-main">Twisted Edwards curve</span>

In algebraic geometry, the twisted Edwards curves are plane models of elliptic curves, a generalisation of Edwards curves introduced by Bernstein, Birkner, Joye, Lange and Peters in 2008. The curve set is named after mathematician Harold M. Edwards. Elliptic curves are important in public key cryptography and twisted Edwards curves are at the heart of an electronic signature scheme called EdDSA that offers high performance while avoiding security problems that have surfaced in other digital signature schemes.

References

  1. Goldblatt, Robert (2006), "11.2 Formal Language and Semantics", Topoi : the categorial analysis of logic (2nd ed.), Mineola, N.Y.: Dover Publications, ISBN   978-0-486-31796-0, OCLC   853624133
  2. Hodges, Wilfrid (2009), "Functional Modelling and Mathematical Models", in Meijers, Anthonie (ed.), Philosophy of technology and engineering sciences, Handbook of the Philosophy of Science, vol. 9, Elsevier, ISBN   978-0-444-51667-1

Further reading