Element (mathematics)

Last updated

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (), one could say that "3 is an element of A", expressed notationally as .

Contents

Sets

Writing means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A.

Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set .

The elements of a set can be anything. For example the elements of the set are the color red, the number 12, and the set B.

In logical terms, .[ clarification needed ]

Notation and terminology

The binary relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing

means that "x is an element of A". [1] Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A" and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3]

For the relation ∈ , the converse relationT may be written

meaning "A contains or includes x".

The negation of set membership is denoted by the symbol "∉". Writing

means that "x is not an element of A".

The symbol ∈ was first used by Giuseppe Peano, in his 1889 work Arithmetices principia, nova methodo exposita . [4] Here he wrote on page X:

Signum significat est. Ita a b legitur a est quoddam b; …

which means

The symbol ∈ means is. So ab is read as a is a certain b; …

The symbol itself is a stylized lowercase Greek letter epsilon ("ϵ"), the first letter of the word ἐστί , which means "is". [4]

Character information
Preview
Unicode nameELEMENT OFNOT AN ELEMENT OFCONTAINS AS MEMBERDOES NOT CONTAIN AS MEMBER
Encodingsdecimalhexdechexdechexdechex
Unicode 8712U+22088713U+22098715U+220B8716U+220C
UTF-8 226 136 136E2 88 88226 136 137E2 88 89226 136 139E2 88 8B226 136 140E2 88 8C
Numeric character reference ∈∈∉∉∋∋∌∌
Named character reference ∈, ∈, ∈, ∈∉, ∉, ∉∋, ∋, ∋, ∋∌, ∌, ∌
LaTeX \in\notin\ni\not\ni or \notni
Wolfram Mathematica \[Element]\[NotElement]\[ReverseElement]\[NotReverseElement]

Examples

Using the sets defined above, namely A = {1, 2, 3, 4}, B = {1, 2, {3, 4}} and C = {red, green, blue}, the following statements are true:

Cardinality of sets

The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers {1, 2, 3, 4, ...}.

Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U× P(U). The converse relation is a subset of P(U) ×U.

See also

Related Research Articles

<span class="mw-page-title-main">Axiom of choice</span> Axiom of set theory

In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets, there exists an indexed set such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. The axiom of choice is equivalent to the statement that every partition has a transversal.

<span class="mw-page-title-main">Boolean algebra (structure)</span> Algebraic structure modeling logical operations

In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra.

Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language. It describes the aspects of mathematical sets familiar in discrete mathematics, and suffices for the everyday use of set theory concepts in contemporary mathematics.

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

<span class="mw-page-title-main">Empty set</span> Mathematical set containing no elements

In mathematics, the empty set or void set is the unique set having no elements; its size or cardinality is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set.

<span class="mw-page-title-main">Nonstandard analysis</span> Calculus using a logically rigorous notion of infinitesimal numbers

The history of calculus is fraught with philosophical debates about the meaning and logical validity of fluxions or infinitesimal numbers. The standard way to resolve these debates is to define the operations of calculus using limits rather than infinitesimals. Nonstandard analysis instead reformulates the calculus using a logically rigorous notion of infinitesimal numbers.

<i>Naive Set Theory</i> (book) 1960 mathematics textbook by Paul Halmos

Naive Set Theory is a mathematics textbook by Paul Halmos providing an undergraduate introduction to set theory. Originally published by Van Nostrand in 1960, it was reprinted in the Springer-Verlag Undergraduate Texts in Mathematics series in 1974.

<span class="mw-page-title-main">Set (mathematics)</span> Collection of mathematical objects

In mathematics, a set is a collection of different things; these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. A set may be finite or infinite, depending whether the number of its elements is finite or not. There is a unique set with no elements, called the empty set; a set with a single element is a singleton.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

<span class="mw-page-title-main">Zorn's lemma</span> Mathematical proposition equivalent to the axiom of choice

Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. The set X is called the domain of the function and the set Y is called the codomain of the function.

In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.

<span class="mw-page-title-main">Partition of a set</span> Mathematical ways to group elements of a set

In mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra. It consists of a partially ordered set in which every pair of elements has a unique supremum and a unique infimum. An example is given by the power set of a set, partially ordered by inclusion, for which the supremum is the union and the infimum is the intersection. Another example is given by the natural numbers, partially ordered by divisibility, for which the supremum is the least common multiple and the infimum is the greatest common divisor.

In mathematics, a Grothendieck universe is a set U with the following properties:

  1. If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
  2. If x and y are both elements of U, then is an element of U.
  3. If x is an element of U, then P(x), the power set of x, is also an element of U.
  4. If is a family of elements of U, and if I is an element of U, then the union is an element of U.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

General set theory (GST) is George Boolos's (1998) name for a fragment of the axiomatic set theory Z. GST is sufficient for all mathematics not requiring infinite sets, and is the weakest known set theory whose theorems include the Peano axioms.

This is a glossary of terms and definitions related to the topic of set theory.

References

  1. Weisstein, Eric W. "Element". mathworld.wolfram.com. Retrieved 2020-08-10.
  2. Eric Schechter (1997). Handbook of Analysis and Its Foundations. Academic Press. ISBN   0-12-622760-8. p. 12
  3. George Boolos (February 4, 1992). 24.243 Classical Set Theory (lecture) (Speech). Massachusetts Institute of Technology.
  4. 1 2 Kennedy, H. C. (July 1973). "What Russell learned from Peano". Notre Dame Journal of Formal Logic. 14 (3). Duke University Press: 367–372. doi: 10.1305/ndjfl/1093891001 . MR   0319684.
  5. "Sets - Elements | Brilliant Math & Science Wiki". brilliant.org. Retrieved 2020-08-10.

Further reading

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (), one could say that "3 is an element of A", expressed notationally as .

Sets

Writing means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A.

Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set .

The elements of a set can be anything. For example the elements of the set are the color red, the number 12, and the set B.

In logical terms, .[ clarification needed ]

Notation and terminology

The binary relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing

means that "x is an element of A". [1] Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A" and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3]

For the relation ∈ , the converse relationT may be written

meaning "A contains or includes x".

The negation of set membership is denoted by the symbol "∉". Writing

means that "x is not an element of A".

The symbol ∈ was first used by Giuseppe Peano, in his 1889 work Arithmetices principia, nova methodo exposita . [4] Here he wrote on page X:

Signum significat est. Ita a b legitur a est quoddam b; …

which means

The symbol ∈ means is. So ab is read as a is a certain b; …

The symbol itself is a stylized lowercase Greek letter epsilon ("ϵ"), the first letter of the word ἐστί , which means "is". [4]

Character information
Preview
Unicode nameELEMENT OFNOT AN ELEMENT OFCONTAINS AS MEMBERDOES NOT CONTAIN AS MEMBER
Encodingsdecimalhexdechexdechexdechex
Unicode 8712U+22088713U+22098715U+220B8716U+220C
UTF-8 226 136 136E2 88 88226 136 137E2 88 89226 136 139E2 88 8B226 136 140E2 88 8C
Numeric character reference &#8712;&#x2208;&#8713;&#x2209;&#8715;&#x220B;&#8716;&#x220C;
Named character reference &Element;, &in;, &isin;, &isinv;&NotElement;, &notin;, &notinva;&ni;, &niv;, &ReverseElement;, &SuchThat;&notni;, &notniva;, &NotReverseElement;
LaTeX \in\notin\ni\not\ni or \notni
Wolfram Mathematica \[Element]\[NotElement]\[ReverseElement]\[NotReverseElement]

Examples

Using the sets defined above, namely A = {1, 2, 3, 4}, B = {1, 2, {3, 4}} and C = {red, green, blue}, the following statements are true:

Cardinality of sets

The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers {1, 2, 3, 4, ...}.

Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U× P(U). The converse relation is a subset of P(U) ×U.

See also

References

Further reading

In mathematics, an element (or member) of a set is any one of the distinct objects that belong to that set. For example, given a set called A containing the first four positive integers (), one could say that "3 is an element of A", expressed notationally as .

Sets

Writing means that the elements of the set are the numbers 1, 2, 3 and 4. Sets of elements of A, for example , are subsets of A.

Sets can themselves be elements. For example, consider the set . The elements of B are not 1, 2, 3, and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set .

The elements of a set can be anything. For example the elements of the set are the color red, the number 12, and the set B.

In logical terms, .[ clarification needed ]

Notation and terminology

The binary relation "is an element of", also called set membership, is denoted by the symbol "∈". Writing

means that "x is an element of A". [1] Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A" and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, although some authors use them to mean instead "x is a subset of A". [2] Logician George Boolos strongly urged that "contains" be used for membership only, and "includes" for the subset relation only. [3]

For the relation ∈ , the converse relationT may be written

meaning "A contains or includes x".

The negation of set membership is denoted by the symbol "∉". Writing

means that "x is not an element of A".

The symbol ∈ was first used by Giuseppe Peano, in his 1889 work Arithmetices principia, nova methodo exposita . [4] Here he wrote on page X:

Signum significat est. Ita a b legitur a est quoddam b; …

which means

The symbol ∈ means is. So ab is read as a is a certain b; …

The symbol itself is a stylized lowercase Greek letter epsilon ("ϵ"), the first letter of the word ἐστί , which means "is". [4]

Character information
Preview
Unicode nameELEMENT OFNOT AN ELEMENT OFCONTAINS AS MEMBERDOES NOT CONTAIN AS MEMBER
Encodingsdecimalhexdechexdechexdechex
Unicode 8712U+22088713U+22098715U+220B8716U+220C
UTF-8 226 136 136E2 88 88226 136 137E2 88 89226 136 139E2 88 8B226 136 140E2 88 8C
Numeric character reference &#8712;&#x2208;&#8713;&#x2209;&#8715;&#x220B;&#8716;&#x220C;
Named character reference &Element;, &in;, &isin;, &isinv;&NotElement;, &notin;, &notinva;&ni;, &niv;, &ReverseElement;, &SuchThat;&notni;, &notniva;, &NotReverseElement;
LaTeX \in\notin\ni\not\ni or \notni
Wolfram Mathematica \[Element]\[NotElement]\[ReverseElement]\[NotReverseElement]

Examples

Using the sets defined above, namely A = {1, 2, 3, 4}, B = {1, 2, {3, 4}} and C = {red, green, blue}, the following statements are true:

Cardinality of sets

The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. [5] In the above examples, the cardinality of the set A is 4, while the cardinality of set B and set C are both 3. An infinite set is a set with an infinite number of elements, while a finite set is a set with a finite number of elements. The above examples are examples of finite sets. An example of an infinite set is the set of positive integers {1, 2, 3, 4, ...}.

Formal relation

As a relation, set membership must have a domain and a range. Conventionally the domain is called the universe denoted U. The range is the set of subsets of U called the power set of U and denoted P(U). Thus the relation is a subset of U× P(U). The converse relation is a subset of P(U) ×U.

See also

References

Further reading