This article needs additional citations for verification .(September 2011) (Learn how and when to remove this template message) |

In set theory, an **infinite set** is a set that is not a finite set. Infinite sets may be countable or uncountable.^{ [1] }^{ [2] }^{ [3] }

The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite.^{ [3] }^{ [4] } It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in Zermelo–Fraenkel set theory (ZFC), but only by showing that it follows from the existence of the natural numbers.

A set is infinite if and only if for every natural number, the set has a subset whose cardinality is that natural number.^{[ citation needed ]}

If the axiom of choice holds, then a set is infinite if and only if it includes a countable infinite subset.

If a set of sets is infinite or contains an infinite element, then its union is infinite. The power set of an infinite set is infinite.^{ [5] } Any superset of an infinite set is infinite. If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite. Any set which can be mapped * onto * an infinite set is infinite. The Cartesian product of an infinite set and a nonempty set is infinite. The Cartesian product of an infinite number of sets, each containing at least two elements, is either empty or infinite; if the axiom of choice holds, then it is infinite.

If an infinite set is a well-ordered set, then it must have a nonempty, nontrivial subset that has no greatest element.

In ZF, a set is infinite if and only if the power set of its power set is a Dedekind-infinite set, having a proper subset equinumerous to itself.^{ [6] } If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets.

If an infinite set is a well-orderable set, then it has many well-orderings which are non-isomorphic.

The set of all integers, {..., -1, 0, 1, 2, ...} is a countably infinite set. The set of all even integers is also a countably infinite set, even if it is a proper subset of the integers.^{ [5] }

The set of all rational numbers is a countably infinite set as there is a bijection to the set of integers.^{ [5] }

The set of all real numbers is an uncountably infinite set. The set of all irrational numbers is also an uncountably infinite set.^{ [5] }

In mathematics, the **axiom of choice**, or **AC**, is an axiom of set theory equivalent to the statement that *a Cartesian product of a collection of non-empty sets is non-empty*. Informally put, the axiom of choice says that given any collection of bins, each containing at least one object, it is possible to make a selection of exactly one object from each bin, even if the collection is infinite. Formally, it states that for every indexed family of nonempty sets there exists an indexed family of elements such that for every . The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem.

In mathematics, a **countable set** is a set with the same cardinality as some subset of the set of natural numbers. A countable set is either a finite set or a **countably infinite** set. Whether finite or infinite, the elements of a countable set can always be counted one at a time and—although the counting may never finish—every element of the set is associated with a unique natural number.

In mathematics, **cardinal numbers**, or **cardinals** for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The *transfinite* cardinal numbers, often denoted using the Hebrew symbol (aleph) followed by a subscript, describe the sizes of infinite sets.

In mathematics, the **cardinality** of a set is a measure of the "number of elements" of the set. For example, the set contains 3 elements, and therefore has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between the different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its **size**, when no confusion with other notions of size is possible.

In mathematics, a **finite set** is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example,

In mathematics, an **uncountable set** is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.

In mathematics, a **well-order** on a set *S* is a total order on *S* with the property that every non-empty subset of *S* has a least element in this ordering. The set *S* together with the well-order relation is then called a **well-ordered set**. In some academic articles and textbooks these terms are instead written as **wellorder**, **wellordered**, and **wellordering** or **well order**, **well ordered**, and **well ordering**.

An **enumeration** is a complete, ordered listing of all the items in a collection. The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration depend on the discipline of study and the context of a given problem.

In the mathematical discipline of set theory, **0 ^{#}** is the set of true formulae about indiscernibles and order-indiscernibles in the Gödel constructible universe. It is often encoded as a subset of the integers, or as a subset of the hereditarily finite sets, or as a real number. Its existence is unprovable in ZFC, the standard form of axiomatic set theory, but follows from a suitable large cardinal axiom. It was first introduced as a set of formulae in Silver's 1966 thesis, later published as Silver (1971), where it was denoted by Σ, and rediscovered by Solovay, who considered it as a subset of the natural numbers and introduced the notation O

In mathematics, particularly in set theory, the **aleph numbers** are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

In mathematics, two sets or classes *A* and *B* are **equinumerous** if there exists a one-to-one correspondence between them, that is, if there exists a function from *A* to *B* such that for every element *y* of *B*, there is exactly one element *x* of *A* with *f*(*x*) = *y*. Equinumerous sets are said to have the same cardinality. The study of cardinality is often called **equinumerosity** (*equalness-of-number*). The terms **equipollence** (*equalness-of-strength*) and **equipotence** (*equalness-of-power*) are sometimes used instead.

In set theory, a **regular cardinal** is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called **singular cardinals**. Finite cardinal numbers are typically not called regular or singular.

In mathematics, a **non-measurable set** is a set which cannot be assigned a meaningful "volume". The mathematical existence of such sets is construed to provide information about the notions of length, area and volume in formal set theory. In ZF, choice entails that non-measurable subsets of exist.

In mathematics, a set *A* is **Dedekind-infinite** if some proper subset *B* of *A* is equinumerous to *A*. Explicitly, this means that there exists a bijective function from *A* onto some proper subset *B* of *A*. A set is **Dedekind-finite** if it is not Dedekind-infinite. Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers.

An approach to the foundations of mathematics that is of relatively recent origin, **Scott–Potter set theory** is a collection of nested axiomatic set theories set out by the philosopher Michael Potter, building on earlier work by the mathematician Dana Scott and the philosopher George Boolos.

This article contains a discussion of **paradoxes of set theory**. As with most mathematical paradoxes, they generally reveal surprising and counter-intuitive mathematical results, rather than actual logical contradictions within modern axiomatic set theory.

In mathematics, a **real number** is a value of a continuous quantity that can represent a distance along a line. The adjective *real* in this context was introduced in the 17th century by René Descartes, who distinguished between real and imaginary roots of polynomials. The real numbers include all the rational numbers, such as the integer −5 and the fraction 4/3, and all the irrational numbers, such as √2. Included within the irrationals are the real transcendental numbers, such as π (3.14159265...). In addition to measuring distance, real numbers can be used to measure quantities such as time, mass, energy, velocity, and many more. The set of real numbers is denoted using the symbol **R** or and is sometimes called "the reals".

In set theory, an **ordinal number**, or **ordinal**, is one generalization of the concept of a natural number that is used to describe a way to arrange a collection of objects in order, one after another.

In mathematics a group is a set together with a binary operation on the set called **multiplication** that obeys the group axioms. The axiom of choice is an axiom of ZFC set theory which in one form states that every set can be wellordered.

This is a **glossary of set theory**.

- ↑ "The Definitive Glossary of Higher Mathematical Jargon — Infinite".
*Math Vault*. 2019-08-01. Retrieved 2019-11-29. - ↑ Weisstein, Eric W. "Infinite Set".
*mathworld.wolfram.com*. Retrieved 2019-11-29. - 1 2 "infinite set in nLab".
*ncatlab.org*. Retrieved 2019-11-29. - ↑ Bagaria, Joan (2019), Zalta, Edward N. (ed.), "Set Theory",
*The Stanford Encyclopedia of Philosophy*(Fall 2019 ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-11-30 - 1 2 3 4 Caldwell, Chris. "The Prime Glossary — Infinite".
*primes.utm.edu*. Retrieved 2019-11-29. - ↑ Boolos, George (1994), "The advantages of honest toil over theft",
*Mathematics and mind (Amherst, MA, 1991)*, Logic Comput. Philos., Oxford Univ. Press, New York, pp. 27–44, MR 1373892 . See in particular pp. 32–33.

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.