Logical truth

Last updated

Logical truth is one of the most fundamental concepts in logic. Broadly speaking, a logical truth is a statement which is true regardless of the truth or falsity of its constituent propositions. In other words, a logical truth is a statement which is not only true, but one which is true under all interpretations of its logical components (other than its logical constants). Thus, logical truths such as "if p, then p" can be considered tautologies. Logical truths are thought to be the simplest case of statements which are analytically true (or in other words, true by definition). All of philosophical logic can be thought of as providing accounts of the nature of logical truth, as well as logical consequence. [1]

Contents

Logical truths are generally considered to be necessarily true. This is to say that they are such that no situation could arise in which they could fail to be true. The view that logical statements are necessarily true is sometimes treated as equivalent to saying that logical truths are true in all possible worlds. However, the question of which statements are necessarily true remains the subject of continued debate.

Treating logical truths, analytic truths, and necessary truths as equivalent, logical truths can be contrasted with facts (which can also be called contingent claims or synthetic claims). Contingent truths are true in this world, but could have turned out otherwise (in other words, they are false in at least one possible world). Logically true propositions such as "If p and q, then p" and "All married people are married" are logical truths because they are true due to their internal structure and not because of any facts of the world (whereas "All married people are happy", even if it were true, could not be true solely in virtue of its logical structure).

Rationalist philosophers have suggested that the existence of logical truths cannot be explained by empiricism, because they hold that it is impossible to account for our knowledge of logical truths on empiricist grounds. Empiricists commonly respond to this objection by arguing that logical truths (which they usually deem to be mere tautologies), are analytic and thus do not purport to describe the world. The latter view was notably defended by the logical positivists in the early 20th century.

Logical truths and analytic truths

Logical truths, being analytic statements, do not contain any information about any matters of fact. Other than logical truths, there is also a second class of analytic statements, typified by "no bachelor is married". The characteristic of such a statement is that it can be turned into a logical truth by substituting synonyms for synonyms salva veritate . "No bachelor is married" can be turned into "no unmarried man is married" by substituting "unmarried man" for its synonym "bachelor".[ citation needed ]

In his essay Two Dogmas of Empiricism, the philosopher W. V. O. Quine called into question the distinction between analytic and synthetic statements. It was this second class of analytic statements that caused him to note that the concept of analyticity itself stands in need of clarification, because it seems to depend on the concept of synonymy, which stands in need of clarification. In his conclusion, Quine rejects that logical truths are necessary truths. Instead he posits that the truth-value of any statement can be changed, including logical truths, given a re-evaluation of the truth-values of every other statement in one's complete theory.[ citation needed ]

Truth values and tautologies

Considering different interpretations of the same statement leads to the notion of truth value. The simplest approach to truth values means that the statement may be "true" in one case, but "false" in another. In one sense of the term tautology, it is any type of formula or proposition which turns out to be true under any possible interpretation of its terms (may also be called a valuation or assignment depending upon the context). This is synonymous to logical truth.[ citation needed ]

However, the term tautology is also commonly used to refer to what could more specifically be called truth-functional tautologies. Whereas a tautology or logical truth is true solely because of the logical terms it contains in general (e.g. "every", "some", and "is"), a truth-functional tautology is true because of the logical terms it contains which are logical connectives (e.g. "or", "and", and "nor"). Not all logical truths are tautologies of such a kind.[ citation needed ]

Logical truth and logical constants

Logical constants, including logical connectives and quantifiers, can all be reduced conceptually to logical truth. For instance, two statements or more are logically incompatible if, and only if their conjunction is logically false. One statement logically implies another when it is logically incompatible with the negation of the other. A statement is logically true if, and only if its opposite is logically false. The opposite statements must contradict one another. In this way all logical connectives can be expressed in terms of preserving logical truth. The logical form of a sentence is determined by its semantic or syntactic structure and by the placement of logical constants. Logical constants determine whether a statement is a logical truth when they are combined with a language that limits its meaning. Therefore, until it is determined how to make a distinction between all logical constants regardless of their language, it is impossible to know the complete truth of a statement or argument. [2]

Logical truth and rules of inference

The concept of logical truth is closely connected to the concept of a rule of inference. [3]

Logical truth and logical positivism

Logical positivism was a movement in the early 20th century that tried to reduce the reasoning processes of science to pure logic. Among other things, the logical positivists claimed that any proposition that is not empirically verifiable is neither true nor false, but nonsense.[ citation needed ]

Non-classical logics

Non-classical logic is the name given to formal systems which differ in a significant way from standard logical systems such as propositional and predicate logic. There are several ways in which this is done, including by way of extensions, deviations, and variations. The aim of these departures is to make it possible to construct different models of logical consequence and logical truth. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

Logical positivism, later called logical empiricism, and both of which together are also known as neopositivism, is a movement whose central thesis is the verification principle. This theory of knowledge asserts that only statements verifiable through direct observation or logical proof are meaningful in terms of conveying truth value, information or factual content. Starting in the late 1920s, groups of philosophers, scientists, and mathematicians formed the Berlin Circle and the Vienna Circle, which, in these two cities, would propound the ideas of logical positivism.

<span class="mw-page-title-main">Willard Van Orman Quine</span> American philosopher and logician (1908–2000)

Willard Van Orman Quine was an American philosopher and logician in the analytic tradition, recognized as "one of the most influential philosophers of the twentieth century". He served as the Edgar Pierce Chair of Philosophy at Harvard University from 1956 to 1978.

"What the Tortoise Said to Achilles", written by Lewis Carroll in 1895 for the philosophical journal Mind, is a brief allegorical dialogue on the foundations of logic. The title alludes to one of Zeno's paradoxes of motion, in which Achilles could never overtake the tortoise in a race. In Carroll's dialogue, the tortoise challenges Achilles to use the force of logic to make him accept the conclusion of a simple deductive argument. Ultimately, Achilles fails, because the clever tortoise leads him into an infinite regression.

In logic, false or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0, O, and the up tack symbol .

<span class="mw-page-title-main">Hume's fork</span> English philosophy

Hume's fork, in epistemology, is a tenet elaborating upon British empiricist philosopher David Hume's emphatic, 1730s division between "relations of ideas" and "matters of fact." As phrased in Immanuel Kant's 1780s characterization of Hume's thesis, and furthered in the 1930s by the logical empiricists, Hume's fork asserts that all statements are exclusively either "analytic a priori" or "synthetic a posteriori," which, respectively, are universally true by mere definition or, however apparently probable, are unknowable without exact experience.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

"Two Dogmas of Empiricism" is a paper by analytic philosopher Willard Van Orman Quine published in 1951. According to University of Sydney professor of philosophy Peter Godfrey-Smith, this "paper [is] sometimes regarded as the most important in all of twentieth-century philosophy". The paper is an attack on two central aspects of the logical positivists' philosophy: the first being the analytic–synthetic distinction between analytic truths and synthetic truths, explained by Quine as truths grounded only in meanings and independent of facts, and truths grounded in facts; the other being reductionism, the theory that each meaningful statement gets its meaning from some logical construction of terms that refer exclusively to immediate experience.

In logic and analytic philosophy, an atomic sentence is a type of declarative sentence which is either true or false and which cannot be broken down into other simpler sentences. For example, "The dog ran" is an atomic sentence in natural language, whereas "The dog ran and the cat hid" is a molecular sentence in natural language.

<i>Language, Truth, and Logic</i> 1936 book by A. J. Ayer

Language, Truth and Logic is a 1936 book about meaning by the philosopher Alfred Jules Ayer, in which the author defines, explains, and argues for the verification principle of logical positivism, sometimes referred to as the criterion of significance or criterion of meaning. Ayer explains how the principle of verifiability may be applied to the problems of philosophy. Language, Truth and Logic brought some of the ideas of the Vienna Circle and the logical empiricists to the attention of the English-speaking world.

Verificationism, also known as the verification principle or the verifiability criterion of meaning, is the philosophical doctrine which asserts that a statement is meaningful only if it is either empirically verifiable or a truth of logic.

In mathematical logic, a tautology is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

A truth-bearer is an entity that is said to be either true or false and nothing else. The thesis that some things are true while others are false has led to different theories about the nature of these entities. Since there is divergence of opinion on the matter, the term truth-bearer is used to be neutral among the various theories. Truth-bearer candidates include propositions, sentences, sentence-tokens, statements, beliefs, thoughts, intuitions, utterances, and judgements but different authors exclude one or more of these, deny their existence, argue that they are true only in a derivative sense, assert or assume that the terms are synonymous, or seek to avoid addressing their distinction or do not clarify it.

The analytic–synthetic distinction is a semantic distinction used primarily in philosophy to distinguish between propositions that are of two types: analytic propositions and synthetic propositions. Analytic propositions are true or not true solely by virtue of their meaning, whereas synthetic propositions' truth, if any, derives from how their meaning relates to the world.

A priori and a posteriori are Latin phrases used in philosophy to distinguish types of knowledge, justification, or argument by their reliance on experience. A priori knowledge is independent from any experience. Examples include mathematics, tautologies and deduction from pure reason. A posteriori knowledge depends on empirical evidence. Examples include most fields of science and aspects of personal knowledge.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

Philosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines. According to a common characterisation, philosophical logic is the part of the philosophy of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. But other theorists draw the distinction between the philosophy of logic and philosophical logic differently or not at all. Metalogic is closely related to the philosophy of logic as the discipline investigating the properties of formal logical systems, like consistency and completeness.

A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid.

Logical consequence is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises. The philosophical analysis of logical consequence involves the questions: In what sense does a conclusion follow from its premises? and What does it mean for a conclusion to be a consequence of premises? All of philosophical logic is meant to provide accounts of the nature of logical consequence and the nature of logical truth.

References

  1. Quine, Willard Van Orman, Philosophy of logic
  2. MacFarlane, J. (May 16, 2005). Logical Constants. Metaphysics Research Lab, Stanford University.
  3. Alfred Ayer, Language, Truth, and Logic
  4. Theodore Sider, (2010). Logic for philosophy