Rule of inference

Last updated

In philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions).

Contents

For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.

Typically, a rule of inference preserves truth, a semantic property. In many-valued logic, it preserves a general designation. But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the conclusion of a given set of formulae according to the rule. An example of a rule that is not effective in this sense is the infinitary ω-rule. [1]

Popular rules of inference in propositional logic include modus ponens , modus tollens , and contraposition. First-order predicate logic uses rules of inference to deal with logical quantifiers.

Standard form

In formal logic (and many related areas), rules of inference are usually given in the following standard form:

  Premise#1
  Premise#2
        ...
  Premise#n   
  Conclusion

This expression states that whenever in the course of some logical derivation the given premises have been obtained, the specified conclusion can be taken for granted as well. The exact formal language that is used to describe both premises and conclusions depends on the actual context of the derivations. In a simple case, one may use logical formulae, such as in:

This is the modus ponens rule of propositional logic. Rules of inference are often formulated as schemata employing metavariables. [2] In the rule (schema) above, the metavariables A and B can be instantiated to any element of the universe (or sometimes, by convention, a restricted subset such as propositions) to form an infinite set of inference rules.

A proof system is formed from a set of rules chained together to form proofs, also called derivations. Any derivation has only one final conclusion, which is the statement proved or derived. If premises are left unsatisfied in the derivation, then the derivation is a proof of a hypothetical statement: "if the premises hold, then the conclusion holds."

Example: Hilbert systems for two propositional logics

In a Hilbert system, the premises and conclusion of the inference rules are simply formulae of some language, usually employing metavariables. For graphical compactness of the presentation and to emphasize the distinction between axioms and rules of inference, this section uses the sequent notation () instead of a vertical presentation of rules. In this notation,

is written as .

The formal language for classical propositional logic can be expressed using just negation (¬), implication (→) and propositional symbols. A well-known axiomatization, comprising three axiom schemata and one inference rule (modus ponens), is:

(CA1) ⊢ A → (BA)
(CA2) ⊢ (A → (BC)) → ((AB) → (AC))
(CA3) ⊢ (¬A → ¬B) → (BA)
(MP) A, ABB

It may seem redundant to have two notions of inference in this case, ⊢ and →. In classical propositional logic, they indeed coincide; the deduction theorem states that AB if and only if ⊢ AB. There is however a distinction worth emphasizing even in this case: the first notation describes a deduction, that is an activity of passing from sentences to sentences, whereas AB is simply a formula made with a logical connective, implication in this case. Without an inference rule (like modus ponens in this case), there is no deduction or inference. This point is illustrated in Lewis Carroll's dialogue called "What the Tortoise Said to Achilles", [3] as well as later attempts by Bertrand Russell and Peter Winch to resolve the paradox introduced in the dialogue.

For some non-classical logics, the deduction theorem does not hold. For example, the three-valued logic of Łukasiewicz can be axiomatized as: [4]

(CA1) ⊢ A → (BA)
(LA2) ⊢ (AB) → ((BC) → (AC))
(CA3) ⊢ (¬A → ¬B) → (BA)
(LA4) ⊢ ((A → ¬A) → A) → A
(MP) A, ABB

This sequence differs from classical logic by the change in axiom 2 and the addition of axiom 4. The classical deduction theorem does not hold for this logic, however a modified form does hold, namely AB if and only if ⊢ A → (AB). [5]

Admissibility and derivability

In a set of rules, an inference rule could be redundant in the sense that it is admissible or derivable. A derivable rule is one whose conclusion can be derived from its premises using the other rules. An admissible rule is one whose conclusion holds whenever the premises hold. All derivable rules are admissible. To appreciate the difference, consider the following set of rules for defining the natural numbers (the judgment asserts the fact that is a natural number):

The first rule states that 0 is a natural number, and the second states that s(n) is a natural number if n is. In this proof system, the following rule, demonstrating that the second successor of a natural number is also a natural number, is derivable:

Its derivation is the composition of two uses of the successor rule above. The following rule for asserting the existence of a predecessor for any nonzero number is merely admissible:

This is a true fact of natural numbers, as can be proven by induction. (To prove that this rule is admissible, assume a derivation of the premise and induct on it to produce a derivation of .) However, it is not derivable, because it depends on the structure of the derivation of the premise. Because of this, derivability is stable under additions to the proof system, whereas admissibility is not. To see the difference, suppose the following nonsense rule were added to the proof system:

In this new system, the double-successor rule is still derivable. However, the rule for finding the predecessor is no longer admissible, because there is no way to derive . The brittleness of admissibility comes from the way it is proved: since the proof can induct on the structure of the derivations of the premises, extensions to the system add new cases to this proof, which may no longer hold.

Admissible rules can be thought of as theorems of a proof system. For instance, in a sequent calculus where cut elimination holds, the cut rule is admissible.

See also

Related Research Articles

In classical logic, disjunctive syllogism is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In propositional logic, modus ponens, also known as modus ponendo ponens, implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q.P is true. Therefore Q must also be true."

In propositional logic, modus tollens (MT), also known as modus tollendo tollens and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.

In logic or, more precisely, deductive reasoning, an argument is sound if it is both valid in form and its premises are true. Soundness also has a related meaning in mathematical logic, wherein logical systems are sound if and only if every formula that can be proved in the system is logically valid with respect to the semantics of the system.

In logic and proof theory, natural deduction is a kind of proof calculus in which logical reasoning is expressed by inference rules closely related to the "natural" way of reasoning. This contrasts with Hilbert-style systems, which instead use axioms as much as possible to express the logical laws of deductive reasoning.

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false.

"What the Tortoise Said to Achilles", written by Lewis Carroll in 1895 for the philosophical journal Mind, is a brief allegorical dialogue on the foundations of logic. The title alludes to one of Zeno's paradoxes of motion, in which Achilles could never overtake the tortoise in a race. In Carroll's dialogue, the tortoise challenges Achilles to use the force of logic to make him accept the conclusion of a simple deductive argument. Ultimately, Achilles fails, because the clever tortoise leads him into an infinite regression.

In classical logic, a hypothetical syllogism is a valid argument form, a deductive syllogism with a conditional statement for one or both of its premises. The term originated with Theophrastus.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In mathematical logic, a sequent is a very general kind of conditional assertion.

In mathematical logic, a deduction theorem is a metatheorem that justifies doing conditional proofs from a hypothesis in systems that do not explicitly axiomatize that hypothesis, i.e. to prove an implication A → B, it is sufficient to assume A as a hypothesis and then proceed to derive B. Deduction theorems exist for both propositional logic and first-order logic. The deduction theorem is an important tool in Hilbert-style deduction systems because it permits one to write more comprehensible and usually much shorter proofs than would be possible without it. In certain other formal proof systems the same conveniency is provided by an explicit inference rule; for example natural deduction calls it implication introduction.

Condensed detachment is a method of finding the most general possible conclusion given two formal logical statements. It was developed by the Irish logician Carew Meredith in the 1950s and inspired by the work of Łukasiewicz.

In propositional logic, transposition is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. It is very closely related to the rule of inference modus tollens. It is the rule that

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.

In mathematical logic, the implicational propositional calculus is a version of classical propositional calculus which uses only one connective, called implication or conditional. In formulas, this binary operation is indicated by "implies", "if ..., then ...", "→", "", etc..

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In mathematical logic, monoidal t-norm based logic, the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices by the axiom of prelinearity.

System L is a natural deductive logic developed by E.J. Lemmon. Derived from Suppes' method, it represents natural deduction proofs as sequences of justified steps. Both methods are derived from Gentzen's 1934/1935 natural deduction system, in which proofs were presented in tree-diagram form rather than in the tabular form of Suppes and Lemmon. Although the tree-diagram layout has advantages for philosophical and educational purposes, the tabular layout is much more convenient for practical applications.

References

  1. Boolos, George; Burgess, John; Jeffrey, Richard C. (2007). Computability and logic. Cambridge: Cambridge University Press. p.  364. ISBN   978-0-521-87752-7.
  2. John C. Reynolds (2009) [1998]. Theories of Programming Languages. Cambridge University Press. p. 12. ISBN   978-0-521-10697-9.
  3. Kosta Dosen (1996). "Logical consequence: a turn in style". In Maria Luisa Dalla Chiara; Kees Doets; Daniele Mundici; Johan van Benthem (eds.). Logic and Scientific Methods: Volume One of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, August 1995. Springer. p. 290. ISBN   978-0-7923-4383-7. preprint (with different pagination)
  4. Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems . Cambridge University Press. p.  100. ISBN   978-0-521-88128-9.
  5. Bergmann, Merrie (2008). An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems . Cambridge University Press. p.  114. ISBN   978-0-521-88128-9.