Square of opposition

Last updated
Square of opposition. The lower case letters (a, e, i, o) are used instead of the upper case letters (A, E, I, O) here in order to be visually distinguished from the surrounding upper case letters S (Subject term) and P (Predicate term). In the Venn diagrams, black areas are empty and red areas are nonempty. White areas may or may not be empty. The faded arrows and faded red areas apply in traditional logic assuming the existence of things stated as S (or things satisfying a statement S in modern logic). In modern logic, this is not assumed so the faded ones do not hold. (There can be no element in the faded red areas in the modern logic.) Square of opposition, set diagrams.svg
Square of opposition. The lower case letters (a, e, i, o) are used instead of the upper case letters (A, E, I, O) here in order to be visually distinguished from the surrounding upper case letters S (Subject term) and P (Predicate term). In the Venn diagrams, black areas are empty and red areas are nonempty. White areas may or may not be empty. The faded arrows and faded red areas apply in traditional logic assuming the existence of things stated as S (or things satisfying a statement S in modern logic). In modern logic, this is not assumed so the faded ones do not hold. (There can be no element in the faded red areas in the modern logic.)
Depiction from the 15th century Johannesmagistris-square.jpg
Depiction from the 15th century

In term logic (a branch of philosophical logic), the square of opposition is a diagram representing the relations between the four basic categorical propositions. The origin of the square can be traced back to Aristotle's tractate On Interpretation and its distinction between two oppositions: contradiction and contrariety. However, Aristotle did not draw any diagram; this was done several centuries later by Apuleius and Boethius.

Contents

Summary

In traditional logic, a proposition (Latin: propositio) is a spoken assertion (oratio enunciativa), not the meaning of an assertion, as in modern philosophy of language and logic. A categorical proposition is a simple proposition containing two terms, subject (S) and predicate (P), in which the predicate is either asserted or denied of the subject.

Every categorical proposition can be reduced to one of four logical forms, named A, E, I, and O based on the Latin affirmo (I affirm), for the affirmative propositions A and I, and nego (I deny), for the negative propositions E and O. These are:

In tabular form:

The four Aristotelian propositions
NameSymbolLatinEnglish*MnemonicModern form [1]
Universal affirmativeAOmne S est P.Every S is P.
(S is always P.)
affirmo
(I affirm)
Universal negativeENullum S est P.No S is P.
(S is never P.)
nego
(I deny)
Particular affirmativeIQuoddam S est P.Some S is P.
(S is sometimes P.)
affirmo
(I affirm)
Particular negativeOQuoddam S nōn est P.Some S is not P.
(S is not always P.)
nego
(I deny)

*Proposition A may be stated as "All S is P." However, Proposition E when stated correspondingly as "All S is not P." is ambiguous [2] because it can be either an E or O proposition, thus requiring a context to determine the form; the standard form "No S is P" is unambiguous, so it is preferred. Proposition O also takes the forms "Sometimes S is not P." and "A certain S is not P." (literally the Latin 'Quoddam S nōn est P.')

** in the modern forms means that a statement applies on an object . It may be simply interpreted as " is " in many cases. can be also written as .

Aristotle states (in chapters six and seven of the Peri hermēneias (Περὶ Ἑρμηνείας, Latin De Interpretatione , English 'On Interpretation')), that there are certain logical relationships between these four kinds of proposition. He says that to every affirmation there corresponds exactly one negation, and that every affirmation and its negation are 'opposed' such that always one of them must be true, and the other false. A pair of an affirmative statement and its negation is, he calls, a 'contradiction' (in medieval Latin, contradictio). Examples of contradictories are 'every man is white' and 'not every man is white' (also read as 'some men are not white'), 'no man is white' and 'some man is white'.

The below relations, contrary, subcontrary, subalternation, and superalternation, do hold based on the traditional logic assumption that things stated as S (or things satisfying a statement S in modern logic) exist. If this assumption is taken out, then these relations do not hold.

'Contrary' (medieval: contrariae) statements, are such that both statements cannot be true at the same time. Examples of these are the universal affirmative 'every man is white', and the universal negative 'no man is white'. These cannot be true at the same time. However, these are not contradictories because both of them may be false. For example, it is false that every man is white, since some men are not white. Yet it is also false that no man is white, since there are some white men.

Since every statement has the contradictory opposite (its negation), and since a contradicting statement is true when its opposite is false, it follows that the opposites of contraries (which the medievals called subcontraries, subcontrariae) can both be true, but they cannot both be false. Since subcontraries are negations of universal statements, they were called 'particular' statements by the medieval logicians.

Another logical relation implied by this, though not mentioned explicitly by Aristotle, is 'alternation' (alternatio), consisting of 'subalternation' and 'superalternation'. Subalternation is a relation between the particular statement and the universal statement of the same quality (affirmative or negative) such that the particular is implied by the universal, while superalternation is a relation between them such that the falsity of the universal (equivalently the negation of the universal) is implied by the falsity of the particular (equivalently the negation of the particular). [3] (The superalternation is the contrapositive of the subalternation.) In these relations, the particular is the subaltern of the universal, which is the particular's superaltern. For example, if 'every man is white' is true, its contrary 'no man is white' is false. Therefore, the contradictory 'some man is white' is true. Similarly the universal 'no man is white' implies the particular 'not every man is white'. [4] [5]

In summary:

These relationships became the basis of a diagram originating with Boethius and used by medieval logicians to classify the logical relationships. The propositions are placed in the four corners of a square, and the relations represented as lines drawn between them, whence the name 'The Square of Opposition'. Therefore, the following cases can be made: [6]

  1. If A is true, then E is false, I is true, O is false;
  2. If E is true, then A is false, I is false, O is true;
  3. If I is true, then E is false, A and O are indeterminate;
  4. If O is true, then A is false, E and I are indeterminate;
  5. If A is false, then O is true, E and I are indeterminate;
  6. If E is false, then I is true, A and O are indeterminate;
  7. If I is false, then A is false, E is true, O is true;
  8. If O is false, then A is true, E is false, I is true.

To memorize them, the medievals invented the following Latin rhyme: [7]

A adfirmat, negat E, sed universaliter ambae;
I firmat, negat O, sed particulariter ambae.

It affirms that A and E are not neither both true nor both false in each of the above cases. The same applies to I and O. While the first two are universal statements, the couple I / O refers to particular ones.

The Square of Oppositions was used for the categorical inferences described by the Greek philosopher Aristotle: conversion, obversion and contraposition. Each of those three types of categorical inference was applied to the four Boethian logical forms: A, E, I, and O.

The problem of existential import

Subcontraries (I and O), which medieval logicians represented in the form 'quoddam A est B' (some particular A is B) and 'quoddam A non est B' (some particular A is not B) cannot both be false, since their universal contradictory statements (no A is B / every A is B) cannot both be true. This leads to a difficulty firstly identified by Peter Abelard (1079 – 21 April 1142). 'Some A is B' seems to imply 'something is A', in other words, there exists something that is A. For example, 'Some man is white' seems to imply that at least one thing that exists is a man, namely the man who has to be white, if 'some man is white' is true. But, 'some man is not white' also implies that something as a man exists, namely the man who is not white, if the statement 'some man is not white' is true. But Aristotelian logic requires that, necessarily, one of these statements (more generally 'some particular A is B' and 'some particular A is not B') is true, i.e., they cannot both be false. Therefore, since both statements imply the presence of at least one thing that is a man, the presence of a man or men is followed. But, as Abelard points out in the Dialectica, surely men might not exist? [8]

For with absolutely no man existing, neither the proposition 'every man is a man' is true nor 'some man is not a man'. [9]

Abelard also points out that subcontraries containing subject terms denoting nothing, such as 'a man who is a stone', are both false.

If 'every stone-man is a stone' is true, also its conversion per accidens is true ('some stones are stone-men'). But no stone is a stone-man, because neither this man nor that man etc. is a stone. But also this 'a certain stone-man is not a stone' is false by necessity, since it is impossible to suppose it is true. [10]

Terence Parsons (born 1939) argues that ancient philosophers did not experience the problem of existential import as only the A (universal affirmative) and I (particular affirmative) forms had existential import. (If a statement includes a term such that the statement is false if the term has no instances, i.e., no thing associated with the term exists, then the statement is said to have existential import with respect to that term.)

Affirmatives have existential import, and negatives do not. The ancients thus did not see the incoherence of the square as formulated by Aristotle because there was no incoherence to see. [11]

He goes on to cite a medieval philosopher William of Moerbeke (1215–35 – c.1286),

In affirmative propositions a term is always asserted to supposit for something. Thus, if it supposits for nothing the proposition is false. However, in negative propositions the assertion is either that the term does not supposit for something or that it supposits for something of which the predicate is truly denied. Thus a negative proposition has two causes of truth. [12]

And points to Boethius' translation of Aristotle's work as giving rise to the mistaken notion that the O form has existential import.

But when Boethius (477 – 524 AD) comments on this text he illustrates Aristotle's doctrine with the now-famous diagram, and he uses the wording 'Some man is not just'. So this must have seemed to him to be a natural equivalent in Latin. It looks odd to us in English, but he wasn't bothered by it. [13]

Modern squares of opposition

Frege's square of opposition
The contrar below is an erratum:
It should read subcontrar. Frege-gegensatze.png
Frege's square of opposition
The conträr below is an erratum:
It should read subconträr.

In the 19th century, George Boole (November 1815 – 8 December 1864) argued for requiring existential import on both terms in particular claims (I and O), but allowing all terms of universal claims (A and E) to lack existential import. This decision made Venn diagrams particularly easy to use for term logic. The square of opposition, under this Boolean set of assumptions, is often called the modern Square of opposition. In the modern square of opposition, A and O claims are contradictories, as are E and I, but all other forms of opposition cease to hold; there are no contraries, subcontraries, subalternations, and superalternations. Thus, from a modern point of view, it often makes sense to talk about 'the' opposition of a claim, rather than insisting, as older logicians did, that a claim has several different opposites, which are in different kinds of opposition with the claim.

Gottlob Frege (8 November 1848 – 26 July 1925)'s Begriffsschrift also presents a square of oppositions, organised in an almost identical manner to the classical square, showing the contradictories, subalternates and contraries between four formulae constructed from universal quantification, negation and implication.

Algirdas Julien Greimas (9 March 1917 – 27 February 1992)' semiotic square was derived from Aristotle's work.

The traditional square of opposition is now often compared with squares based on inner- and outer-negation. [14]

Logical hexagons and other bi-simplexes

The square of opposition has been extended to a logical hexagon which includes the relationships of six statements. It was discovered independently by both Augustin Sesmat (April 7, 1885 – December 12, 1957) and Robert Blanché (1898–1975). [15] It has been proven that both the square and the hexagon, followed by a "logical cube", belong to a regular series of n-dimensional objects called "logical bi-simplexes of dimension n." The pattern also goes even beyond this. [16]

Square of opposition (or logical square) and modal logic

The logical square, also called square of opposition or square of Apuleius, has its origin in the four marked sentences to be employed in syllogistic reasoning: "Every man is bad," the universal affirmative - The negation of the universal affirmative "Not every man is bad" (or "Some men are not bad") - "Some men are bad," the particular affirmative - and finally, the negation of the particular affirmative "No man is bad". Robert Blanché published with Vrin his Structures intellectuelles in 1966 and since then many scholars think that the logical square or square of opposition representing four values should be replaced by the logical hexagon which by representing six values is a more potent figure because it has the power to explain more things about logic and natural language.

Set-theoretical interpretation of categorical statements

In modern mathematical logic, statements containing words "all", "some" and "no", can be stated in terms of set theory if we assume a set-like domain of discourse. If the set of all A's is labeled as and the set of all B's as , then:

By definition, the empty set is a subset of all sets. From this fact it follows that, according to this mathematical convention, if there are no A's, then the statements "All A is B" and "No A is B" are always true whereas the statements "Some A is B" and "Some A is not B" are always false. This also implies that AaB does not entail AiB, and some of the syllogisms mentioned above are not valid when there are no A's ().

See also

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

In logic, the law of non-contradiction (LNC) states that contradictory propositions cannot both be true in the same sense at the same time, e. g. the two propositions "p is the case" and "p is not the case" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one, "p is the case" or "p is not the case", holds.

In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens or De Morgan's laws. The law is also known as the law / principleof the excluded third, in Latin principium tertii exclusi. Another Latin designation for this law is tertium non datur or "no third [possibility] is given". In classical logic, the law is a tautology.

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, equivalence, and negation. Some sources include other connectives, as in the table below.

<span class="mw-page-title-main">Syllogism</span> Type of logical argument that applies deductive reasoning

A syllogism is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true.

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier ("x" or "∃(x)" or "(∃x)"). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain. Some sources use the term existentialization to refer to existential quantification.

<span class="mw-page-title-main">Negation</span> Logical operation

In logic, negation, also called the logical not or logical complement, is an operation that takes a proposition to another proposition "not ", standing for " is not true", written , or . It is interpreted intuitively as being true when is false, and false when is true. Negation is thus a unary logical connective. It may be applied as an operation on notions, propositions, truth values, or semantic values more generally. In classical logic, negation is normally identified with the truth function that takes truth to falsity. In intuitionistic logic, according to the Brouwer–Heyting–Kolmogorov interpretation, the negation of a proposition is the proposition whose proofs are the refutations of .

In logic and formal semantics, term logic, also known as traditional logic, syllogistic logic or Aristotelian logic, is a loose name for an approach to formal logic that began with Aristotle and was developed further in ancient history mostly by his followers, the Peripatetics. It was revived after the third century CE by Porphyry's Isagoge.

Paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic, which reject the principle of explosion.

In classical logic, intuitionistic logic and similar logical systems, the principle of explosion, or the principle of Pseudo-Scotus, is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition can be inferred; this is known as deductive explosion.

De Interpretatione or On Interpretation is the second text from Aristotle's Organon and is among the earliest surviving philosophical works in the Western tradition to deal with the relationship between language and logic in a comprehensive, explicit, and formal way. The work is usually known by its Latin title.

The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.

In traditional logic, obversion is a "type of immediate inference in which from a given proposition another proposition is inferred whose subject is the same as the original subject, whose predicate is the contradictory of the original predicate, and whose quality is affirmative if the original proposition's quality was negative and vice versa". The quality of the inferred categorical proposition is changed but the truth value is the same to the original proposition. The immediately inferred proposition is termed the "obverse" of the original proposition, and is a valid form of inference for all types of categorical propositions.

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category are included in another. The study of arguments using categorical statements forms an important branch of deductive reasoning that began with the Ancient Greeks.

Epistemic modal logic is a subfield of modal logic that is concerned with reasoning about knowledge. While epistemology has a long philosophical tradition dating back to Ancient Greece, epistemic logic is a much more recent development with applications in many fields, including philosophy, theoretical computer science, artificial intelligence, economics and linguistics. While philosophers since Aristotle have discussed modal logic, and Medieval philosophers such as Avicenna, Ockham, and Duns Scotus developed many of their observations, it was C. I. Lewis who created the first symbolic and systematic approach to the topic, in 1912. It continued to mature as a field, reaching its modern form in 1963 with the work of Kripke.

In mathematical logic, a tautology is a formula or assertion that is true in every possible interpretation. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

In logic and mathematics, contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

<span class="mw-page-title-main">Logical hexagon</span>

In philosophical logic, the logical hexagon is a conceptual model of the relationships between the truth values of six statements. It is an extension of Aristotle's square of opposition. It was discovered independently by both Augustin Sesmat and Robert Blanché.

References

  1. Per The Traditional Square of Opposition: 1.1 The Modern Revision of the Square in the Stanford Encyclopedia of Philosophy
  2. Kelley, David (2014). The Art of Reasoning: An Introduction to Logic and Critical Thinking (4 ed.). New York, NY: W.W. Norton & Company, Inc. p. 150. ISBN   978-0-393-93078-8.
  3. "Introduction to Logic - 7.2.1 Finishing the Square and Immediate Inferences". 2021-08-10.
  4. Parry & Hacker, Aristotelian Logic (SUNY Press, 1990), p. 158.
  5. Cohen & Nagel, Introduction to Logic Second Edition (Hackett Publishing, 1993), p. 55.
  6. Reale, Giovanni; Antiseri, Dario (1983). Il pensiero occidentale dalle origini a oggi. Vol. 1. Brescia: Editrice La Scuola. p. 356. ISBN   88-350-7271-9. OCLC   971192154.
  7. Massaro, Domenico (2005). Questioni di verità: logica di base per capire e farsi capire. Script (in Italian). Vol. 2. Maples: Liguori Editore Srl. p. 58. ISBN   9788820738921. LCCN   2006350806. OCLC   263451944.
  8. In his Dialectica, and in his commentary on the Perihermaneias
  9. Re enim hominis prorsus non existente neque ea vera est quae ait: omnis homo est homo, nec ea quae proponit: quidam homo non est homo
  10. Si enim vera est: Omnis homo qui lapis est, est lapis, et eius conversa per accidens vera est: Quidam lapis est homo qui est lapis. Sed nullus lapis est homo qui est lapis, quia neque hic neque ille etc. Sed et illam: Quidam homo qui est lapis, non est lapis, falsam esse necesse est, cum impossibile ponat
  11. in The Traditional Square of Opposition in the Stanford Encyclopedia of Philosophy
  12. (SL I.72) Loux 1974, 206
  13. The Traditional Square of Opposition
  14. Westerståhl, 'Classical vs. modern squares of opposition, and beyond', in Beziau and Payette (eds.), The Square of Opposition: A General Framework for Cognition, Peter Lang, Bern, 195-229.
  15. N-Opposition Theory Logical hexagon
  16. Moretti, Pellissier