Monadic predicate calculus

Last updated

In logic, the monadic predicate calculus (also called monadic first-order logic) is the fragment of first-order logic in which all relation symbols[ clarification needed ] in the signature are monadic (that is, they take only one argument), and there are no function symbols. All atomic formulas are thus of the form , where is a relation symbol and is a variable.

Contents

Monadic predicate calculus can be contrasted with polyadic predicate calculus, which allows relation symbols that take two or more arguments.

Expressiveness

The absence of polyadic relation symbols severely restricts what can be expressed in the monadic predicate calculus. It is so weak that, unlike the full predicate calculus, it is decidable—there is a decision procedure that determines whether a given formula of monadic predicate calculus is logically valid (true for all nonempty domains). [1] [2] Adding a single binary relation symbol to monadic logic, however, results in an undecidable logic.

Relationship with term logic

The need to go beyond monadic logic was not appreciated until the work on the logic of relations, by Augustus De Morgan and Charles Sanders Peirce in the nineteenth century, and by Frege in his 1879 Begriffsschrift . Prior to the work of these three, term logic (syllogistic logic) was widely considered adequate for formal deductive reasoning.

Inferences in term logic can all be represented in the monadic predicate calculus. For example the argument

All dogs are mammals.
No mammal is a bird.
Thus, no dog is a bird.

can be notated in the language of monadic predicate calculus as

where , and denote the predicates[ clarification needed ] of being, respectively, a dog, a mammal, and a bird.

Conversely, monadic predicate calculus is not significantly more expressive than term logic. Each formula in the monadic predicate calculus is equivalent to a formula in which quantifiers appear only in closed subformulas of the form

or

These formulas slightly generalize the basic judgements considered in term logic. For example, this form allows statements such as "Every mammal is either a herbivore or a carnivore (or both)", . Reasoning about such statements can, however, still be handled within the framework of term logic, although not by the 19 classical Aristotelian syllogisms alone.

Taking propositional logic as given, every formula in the monadic predicate calculus expresses something that can likewise be formulated in term logic. On the other hand, a modern view of the problem of multiple generality in traditional logic concludes that quantifiers cannot nest usefully if there are no polyadic predicates to relate the bound variables.

Variants

The formal system described above is sometimes called the pure monadic predicate calculus, where "pure" signifies the absence of function symbols. Allowing monadic function symbolschanges the logic only superficially[ citation needed ][ clarification needed ], whereas admitting even a single binary function symbol results in an undecidable logic.

Monadic second-order logic allows predicates of higher arity in formulas, but restricts second-order quantification to unary [ clarification needed ] predicates, i.e. the only second-order variables allowed are subset variables.

Footnotes

  1. Heinrich Behmann, Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem, in Mathematische Annalen (1922)
  2. Löwenheim, L. (1915) "Über Möglichkeiten im Relativkalkül," Mathematische Annalen 76: 447-470. Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879-1931. Harvard Univ. Press: 228-51.

Related Research Articles

In mathematics and computer science, the Entscheidungsproblem is a challenge posed by David Hilbert and Wilhelm Ackermann in 1928. It asks for an algorithm that considers an inputted statement and answers "yes" or "no" according to whether it is universally valid, i.e., valid in every structure.

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "all men are mortal", one can have expressions in the form "for all x, if x is a man, then x is mortal", where "for all x" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", or "for any". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In logic and mathematics, second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propositional logic, it provides a canonical normal form useful in automated theorem proving.

In mathematics and logic, plural quantification is the theory that an individual variable x may take on plural, as well as singular, values. As well as substituting individual objects such as Alice, the number 1, the tallest building in London etc. for x, we may substitute both Alice and Bob, or all the numbers between 0 and 10, or all the buildings in London over 20 stories.

<span class="mw-page-title-main">Method of analytic tableaux</span> Tool for proving a logical formula

In proof theory, the semantic tableau, also called an analytic tableau, truth tree, or simply tree, is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. An analytic tableau is a tree structure computed for a logical formula, having at each node a subformula of the original formula to be proved or refuted. Computation constructs this tree and uses it to prove or refute the whole formula. The tableau method can also determine the satisfiability of finite sets of formulas of various logics. It is the most popular proof procedure for modal logics.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the Boolean satisfiability problem. For first-order logic, resolution can be used as the basis for a semi-algorithm for the unsatisfiability problem of first-order logic, providing a more practical method than one following from Gödel's completeness theorem.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In mathematics, the notion of cylindric algebra, developed by Alfred Tarski, arises naturally in the algebraization of first-order logic with equality. This is comparable to the role Boolean algebras play for propositional logic. Cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.

In mathematical logic, a Lindström quantifier is a generalized polyadic quantifier. Lindström quantifiers generalize first-order quantifiers, such as the existential quantifier, the universal quantifier, and the counting quantifiers. They were introduced by Per Lindström in 1966. They were later studied for their applications in logic in computer science and database query languages.

In mathematical logic, predicate functor logic (PFL) is one of several ways to express first-order logic by purely algebraic means, i.e., without quantified variables. PFL employs a small number of algebraic devices called predicate functors that operate on terms to yield terms. PFL is mostly the invention of the logician and philosopher Willard Quine.

In mathematical logic the theory of pure equality is a first-order theory. It has a signature consisting of only the equality relation symbol, and includes no non-logical axioms at all.

In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier in the first order formula expresses that everything in the domain satisfies the property denoted by . On the other hand, the existential quantifier in the formula expresses that there exists something in the domain which satisfies that property. A formula where a quantifier takes widest scope is called a quantified formula. A quantified formula must contain a bound variable and a subformula specifying a property of the referent of that variable.

In mathematical logic, the spectrum of a sentence is the set of natural numbers occurring as the size of a finite model in which a given sentence is true. By a result in descriptive complexity, a set of natural numbers is a spectrum if and only if it can be recognized in non-deterministic exponential time.