Interpretation (logic)

Last updated

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

Contents

The most commonly studied formal logics are propositional logic, predicate logic and their modal analogs, and for these there are standard ways of presenting an interpretation. In these contexts an interpretation is a function that provides the extension of symbols and strings of symbols of an object language. For example, an interpretation function could take the predicate T (for "tall") and assign it the extension {a} (for "Abraham Lincoln"). All our interpretation does is assign the extension {a} to the non-logical constant T, and does not make a claim about whether T is to stand for tall and 'a' for Abraham Lincoln. Nor does logical interpretation have anything to say about logical connectives like 'and', 'or' and 'not'. Though we may take these symbols to stand for certain things or concepts, this is not determined by the interpretation function.

An interpretation often (but not always) provides a way to determine the truth values of sentences in a language. If a given interpretation assigns the value True to a sentence or theory, the interpretation is called a model of that sentence or theory.

Formal languages

A formal language consists of a possibly infinite set of sentences (variously called words or formulas ) built from a fixed set of letters or symbols. The inventory from which these letters are taken is called the alphabet over which the language is defined. To distinguish the strings of symbols that are in a formal language from arbitrary strings of symbols, the former are sometimes called well-formed formulæ (wff). The essential feature of a formal language is that its syntax can be defined without reference to interpretation. For example, we can determine that (P or Q) is a well-formed formula even without knowing whether it is true or false.

Example

A formal language can be defined with the alphabet , and with a word being in if it begins with and is composed solely of the symbols and .

A possible interpretation of could assign the decimal digit '1' to and '0' to . Then would denote 101 under this interpretation of .

Logical constants

In the specific cases of propositional logic and predicate logic, the formal languages considered have alphabets that are divided into two sets: the logical symbols (logical constants) and the non-logical symbols. The idea behind this terminology is that logical symbols have the same meaning regardless of the subject matter being studied, while non-logical symbols change in meaning depending on the area of investigation.

Logical constants are always given the same meaning by every interpretation of the standard kind, so that only the meanings of the non-logical symbols are changed. Logical constants include quantifier symbols ∀ ("all") and ∃ ("some"), symbols for logical connectives ∧ ("and"), ∨ ("or"), ¬ ("not"), parentheses and other grouping symbols, and (in many treatments) the equality symbol =.

General properties of truth-functional interpretations

Many of the commonly studied interpretations associate each sentence in a formal language with a single truth value, either True or False. These interpretations are called truth functional;[ dubious ] they include the usual interpretations of propositional and first-order logic. The sentences that are made true by a particular assignment are said to be satisfied by that assignment.

In classical logic, no sentence can be made both true and false by the same interpretation, although this is not true of glut logics such as LP. [1] Even in classical logic, however, it is possible that the truth value of the same sentence can be different under different interpretations. A sentence is consistent if it is true under at least one interpretation; otherwise it is inconsistent. A sentence φ is said to be logically valid if it is satisfied by every interpretation (if φ is satisfied by every interpretation that satisfies ψ then φ is said to be a logical consequence of ψ).

Logical connectives

Some of the logical symbols of a language (other than quantifiers) are truth-functional connectives that represent truth functions — functions that take truth values as arguments and return truth values as outputs (in other words, these are operations on truth values of sentences).

The truth-functional connectives enable compound sentences to be built up from simpler sentences. In this way, the truth value of the compound sentence is defined as a certain truth function of the truth values of the simpler sentences. The connectives are usually taken to be logical constants, meaning that the meaning of the connectives is always the same, independent of what interpretations are given to the other symbols in a formula.

This is how we define logical connectives in propositional logic:

So under a given interpretation of all the sentence letters Φ and Ψ (i.e., after assigning a truth-value to each sentence letter), we can determine the truth-values of all formulas that have them as constituents, as a function of the logical connectives. The following table shows how this kind of thing looks. The first two columns show the truth-values of the sentence letters as determined by the four possible interpretations. The other columns show the truth-values of formulas built from these sentence letters, with truth-values determined recursively.

Logical connectives
InterpretationΦΨ¬Φ(Φ ∧ Ψ)(Φ ∨ Ψ)(Φ → Ψ)(Φ ↔ Ψ)
#1TTFTTTT
#2TFFFTFF
#3FTTFTTF
#4FFTFFTT

Now it is easier to see what makes a formula logically valid. Take the formula F: (Φ ∨ ¬Φ). If our interpretation function makes Φ True, then ¬Φ is made False by the negation connective. Since the disjunct Φ of F is True under that interpretation, F is True. Now the only other possible interpretation of Φ makes it False, and if so, ¬Φ is made True by the negation function. That would make F True again, since one of Fs disjuncts, ¬Φ, would be true under this interpretation. Since these two interpretations for F are the only possible logical interpretations, and since F comes out True for both, we say that it is logically valid or tautologous.

Interpretation of a theory

An interpretation of a theory is the relationship between a theory and some subject matter when there is a many-to-one correspondence between certain elementary statements of the theory, and certain statements related to the subject matter. If every elementary statement in the theory has a correspondent it is called a full interpretation, otherwise it is called a partial interpretation. [2]

Interpretations for propositional logic

The formal language for propositional logic consists of formulas built up from propositional symbols (also called sentential symbols, sentential variables, propositional variables) and logical connectives. The only non-logical symbols in a formal language for propositional logic are the propositional symbols, which are often denoted by capital letters. To make the formal language precise, a specific set of propositional symbols must be fixed.

The standard kind of interpretation in this setting is a function that maps each propositional symbol to one of the truth values true and false. This function is known as a truth assignment or valuation function. In many presentations, it is literally a truth value that is assigned, but some presentations assign truthbearers instead.

For a language with n distinct propositional variables there are 2n distinct possible interpretations. For any particular variable a, for example, there are 21=2 possible interpretations: 1) a is assigned T, or 2) a is assigned F. For the pair a, b there are 22=4 possible interpretations: 1) both are assigned T, 2) both are assigned F, 3) a is assigned T and b is assigned F, or 4) a is assigned F and b is assigned T.

Given any truth assignment for a set of propositional symbols, there is a unique extension to an interpretation for all the propositional formulas built up from those variables. This extended interpretation is defined inductively, using the truth-table definitions of the logical connectives discussed above.

First-order logic

Unlike propositional logic, where every language is the same apart from a choice of a different set of propositional variables, there are many different first-order languages. Each first-order language is defined by a signature. The signature consists of a set of non-logical symbols and an identification of each of these symbols as a constant symbol, a function symbol, or a predicate symbol. In the case of function and predicate symbols, a natural number arity is also assigned. The alphabet for the formal language consists of logical constants, the equality relation symbol =, all the symbols from the signature, and an additional infinite set of symbols known as variables.

For example, in the language of rings, there are constant symbols 0 and 1, two binary function symbols + and ·, and no binary relation symbols. (Here the equality relation is taken as a logical constant.)

Again, we might define a first-order language L, as consisting of individual symbols a, b, and c; predicate symbols F, G, H, I and J; variables x, y, z; no function letters; no sentential symbols.

Formal languages for first-order logic

Given a signature σ, the corresponding formal language is known as the set of σ-formulas. Each σ-formula is built up out of atomic formulas by means of logical connectives; atomic formulas are built from terms using predicate symbols. The formal definition of the set of σ-formulas proceeds in the other direction: first, terms are assembled from the constant and function symbols together with the variables. Then, terms can be combined into an atomic formula using a predicate symbol (relation symbol) from the signature or the special predicate symbol "=" for equality (see the section "Interpreting equality" below). Finally, the formulas of the language are assembled from atomic formulas using the logical connectives and quantifiers.

Interpretations of a first-order language

To ascribe meaning to all sentences of a first-order language, the following information is needed.

An object carrying this information is known as a structure (of signature σ), or σ-structure, or L-structure (of language L), or as a "model".

The information specified in the interpretation provides enough information to give a truth value to any atomic formula, after each of its free variables, if any, has been replaced by an element of the domain. The truth value of an arbitrary sentence is then defined inductively using the T-schema, which is a definition of first-order semantics developed by Alfred Tarski. The T-schema interprets the logical connectives using truth tables, as discussed above. Thus, for example, φ ∧ ψ is satisfied if and only if both φ and ψ are satisfied.

This leaves the issue of how to interpret formulas of the form x φ(x) and x φ(x). The domain of discourse forms the range for these quantifiers. The idea is that the sentence x φ(x) is true under an interpretation exactly when every substitution instance of φ(x), where x is replaced by some element of the domain, is satisfied. The formula x φ(x) is satisfied if there is at least one element d of the domain such that φ(d) is satisfied.

Strictly speaking, a substitution instance such as the formula φ(d) mentioned above is not a formula in the original formal language of φ, because d is an element of the domain. There are two ways of handling this technical issue. The first is to pass to a larger language in which each element of the domain is named by a constant symbol. The second is to add to the interpretation a function that assigns each variable to an element of the domain. Then the T-schema can quantify over variations of the original interpretation in which this variable assignment function is changed, instead of quantifying over substitution instances.

Some authors also admit propositional variables in first-order logic, which must then also be interpreted. A propositional variable can stand on its own as an atomic formula. The interpretation of a propositional variable is one of the two truth values true and false. [4]

Because the first-order interpretations described here are defined in set theory, they do not associate each predicate symbol with a property [5] (or relation), but rather with the extension of that property (or relation). In other words, these first-order interpretations are extensional [6] not intensional.

Example of a first-order interpretation

An example of interpretation of the language L described above is as follows.

In the interpretation of L:

Non-empty domain requirement

As stated above, a first-order interpretation is usually required to specify a nonempty set as the domain of discourse. The reason for this requirement is to guarantee that equivalences such as

where x is not a free variable of φ, are logically valid. This equivalence holds in every interpretation with a nonempty domain, but does not always hold when empty domains are permitted. For example, the equivalence

fails in any structure with an empty domain. Thus the proof theory of first-order logic becomes more complicated when empty structures are permitted. However, the gain in allowing them is negligible, as both the intended interpretations and the interesting interpretations of the theories people study have non-empty domains. [7] [8]

Empty relations do not cause any problem for first-order interpretations, because there is no similar notion of passing a relation symbol across a logical connective, enlarging its scope in the process. Thus it is acceptable for relation symbols to be interpreted as being identically false. However, the interpretation of a function symbol must always assign a well-defined and total function to the symbol.

Interpreting equality

The equality relation is often treated specially in first order logic and other predicate logics. There are two general approaches.

The first approach is to treat equality as no different than any other binary relation. In this case, if an equality symbol is included in the signature, it is usually necessary to add various axioms about equality to axiom systems (for example, the substitution axiom saying that if a = b and R(a) holds then R(b) holds as well). This approach to equality is most useful when studying signatures that do not include the equality relation, such as the signature for set theory or the signature for second-order arithmetic in which there is only an equality relation for numbers, but not an equality relation for set of numbers.

The second approach is to treat the equality relation symbol as a logical constant that must be interpreted by the real equality relation in any interpretation. An interpretation that interprets equality this way is known as a normal model, so this second approach is the same as only studying interpretations that happen to be normal models. The advantage of this approach is that the axioms related to equality are automatically satisfied by every normal model, and so they do not need to be explicitly included in first-order theories when equality is treated this way. This second approach is sometimes called first order logic with equality, but many authors adopt it for the general study of first-order logic without comment.

There are a few other reasons to restrict study of first-order logic to normal models. First, it is known that any first-order interpretation in which equality is interpreted by an equivalence relation and satisfies the substitution axioms for equality can be cut down to an elementarily equivalent interpretation on a subset of the original domain. Thus there is little additional generality in studying non-normal models. Second, if non-normal models are considered, then every consistent theory has an infinite model; this affects the statements of results such as the Löwenheim–Skolem theorem, which are usually stated under the assumption that only normal models are considered.

Many-sorted first-order logic

A generalization of first order logic considers languages with more than one sort of variables. The idea is different sorts of variables represent different types of objects. Every sort of variable can be quantified; thus an interpretation for a many-sorted language has a separate domain for each of the sorts of variables to range over (there is an infinite collection of variables of each of the different sorts). Function and relation symbols, in addition to having arities, are specified so that each of their arguments must come from a certain sort.

One example of many-sorted logic is for planar Euclidean geometry [ clarification needed ]. There are two sorts; points and lines. There is an equality relation symbol for points, an equality relation symbol for lines, and a binary incidence relation E which takes one point variable and one line variable. The intended interpretation of this language has the point variables range over all points on the Euclidean plane, the line variable range over all lines on the plane, and the incidence relation E(p,l) holds if and only if point p is on line l.

Higher-order predicate logics

A formal language for higher-order predicate logic looks much the same as a formal language for first-order logic. The difference is that there are now many different types of variables. Some variables correspond to elements of the domain, as in first-order logic. Other variables correspond to objects of higher type: subsets of the domain, functions from the domain, functions that take a subset of the domain and return a function from the domain to subsets of the domain, etc. All of these types of variables can be quantified.

There are two kinds of interpretations commonly employed for higher-order logic. Full semantics require that, once the domain of discourse is satisfied, the higher-order variables range over all possible elements of the correct type (all subsets of the domain, all functions from the domain to itself, etc.). Thus the specification of a full interpretation is the same as the specification of a first-order interpretation. Henkin semantics, which are essentially multi-sorted first-order semantics, require the interpretation to specify a separate domain for each type of higher-order variable to range over. Thus an interpretation in Henkin semantics includes a domain D, a collection of subsets of D, a collection of functions from D to D, etc. The relationship between these two semantics is an important topic in higher order logic.

Non-classical interpretations

The interpretations of propositional logic and predicate logic described above are not the only possible interpretations. In particular, there are other types of interpretations that are used in the study of non-classical logic (such as intuitionistic logic), and in the study of modal logic.

Interpretations used to study non-classical logic include topological models, Boolean-valued models, and Kripke models. Modal logic is also studied using Kripke models.

Intended interpretations

Many formal languages are associated with a particular interpretation that is used to motivate them. For example, the first-order signature for set theory includes only one binary relation, ∈, which is intended to represent set membership, and the domain of discourse in a first-order theory of the natural numbers is intended to be the set of natural numbers.

The intended interpretation is called the standard model (a term introduced by Abraham Robinson in 1960). [9] In the context of Peano arithmetic, it consists of the natural numbers with their ordinary arithmetical operations. All models that are isomorphic to the one just given are also called standard; these models all satisfy the Peano axioms. There are also non-standard models of the (first-order version of the) Peano axioms, which contain elements not correlated with any natural number.

While the intended interpretation can have no explicit indication in the strictly formal syntactical rules, it naturally affects the choice of the formation and transformation rules of the syntactical system. For example, primitive signs must permit expression of the concepts to be modeled; sentential formulas are chosen so that their counterparts in the intended interpretation are meaningful declarative sentences; primitive sentences need to come out as true sentences in the interpretation; rules of inference must be such that, if the sentence is directly derivable from a sentence , then turns out to be a true sentence, with meaning implication, as usual. These requirements ensure that all provable sentences also come out to be true. [10]

Most formal systems have many more models than they were intended to have (the existence of non-standard models is an example). When we speak about 'models' in empirical sciences, we mean, if we want reality to be a model of our science, to speak about an intended model. A model in the empirical sciences is an intended factually-true descriptive interpretation (or in other contexts: a non-intended arbitrary interpretation used to clarify such an intended factually-true descriptive interpretation.) All models are interpretations that have the same domain of discourse as the intended one, but other assignments for non-logical constants. [11] [ page needed ]

Example

Given a simple formal system (we shall call this one ) whose alphabet α consists only of three symbols and whose formation rule for formulas is:

'Any string of symbols of which is at least 6 symbols long, and which is not infinitely long, is a formula of . Nothing else is a formula of .'

The single axiom schema of is:

" " (where " " is a metasyntactic variable standing for a finite string of " "s )

A formal proof can be constructed as follows:

In this example the theorem produced " " can be interpreted as meaning "One plus three equals four." A different interpretation would be to read it backwards as "Four minus three equals one." [12] [ page needed ]

Other concepts of interpretation

There are other uses of the term "interpretation" that are commonly used, which do not refer to the assignment of meanings to formal languages.

In model theory, a structure A is said to interpret a structure B if there is a definable subset D of A, and definable relations and functions on D, such that B is isomorphic to the structure with domain D and these functions and relations. In some settings, it is not the domain D that is used, but rather D modulo an equivalence relation definable in A. For additional information, see Interpretation (model theory).

A theory T is said to interpret another theory S if there is a finite extension by definitions T′ of T such that S is contained in T′.

See also

Related Research Articles

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .

A proposition is a central concept in the philosophy of language, semantics, logic, and related fields, often characterized as the primary bearer of truth or falsity. Propositions are also often characterized as being the kind of thing that declarative sentences denote. For instance the sentence "The sky is blue" denotes the proposition that the sky is blue. However, crucially, propositions are not themselves linguistic expressions. For instance, the English sentence "Snow is white" denotes the same proposition as the German sentence "Schnee ist weiß" even though the two sentences are not the same. Similarly, propositions can also be characterized as the objects of belief and other propositional attitudes. For instance if one believes that the sky is blue, what one believes is the proposition that the sky is blue. A proposition can also be thought of as a kind of idea: Collins Dictionary has a definition for proposition as "a statement or an idea that people can consider or discuss whether it is true."

Metalogic is the study of the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables.

In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ, and the two have at least one atomic variable symbol in common, then there is a formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ implies ρ, and ρ implies ψ. The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's interpolation theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the Craig–Lyndon theorem.

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

In logic, the formal languages used to create expressions consist of symbols, which can be broadly divided into constants and variables. The constants of a language can further be divided into logical symbols and non-logical symbols.

In mathematical logic, formation rules are rules for describing which strings of symbols formed from the alphabet of a formal language are syntactically valid within the language. These rules only address the location and manipulation of the strings of the language. It does not describe anything else about a language, such as its semantics. .

In logic and model theory, a valuation can be:

In mathematical logic, true arithmetic is the set of all true first-order statements about the arithmetic of natural numbers. This is the theory associated with the standard model of the Peano axioms in the language of the first-order Peano axioms. True arithmetic is occasionally called Skolem arithmetic, though this term usually refers to the different theory of natural numbers with multiplication.

Dependence logic is a logical formalism, created by Jouko Väänänen, which adds dependence atoms to the language of first-order logic. A dependence atom is an expression of the form , where are terms, and corresponds to the statement that the value of is functionally dependent on the values of .

In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true.

References

  1. Priest, Graham, 2008. An Introduction to Non-Classical Logic: from If to Is, 2nd ed. Cambridge University Press.
  2. Haskell Curry (1963). Foundations of Mathematical Logic . Mcgraw Hill. Here: p.48
  3. Sometimes called the "universe of discourse"
  4. Mates, Benson (1972), Elementary Logic, Second Edition , New York: Oxford University Press, pp.  56, ISBN   0-19-501491-X
  5. The extension of a property (also called an attribute) is a set of individuals, so a property is a unary relation. E.g. The properties "yellow" and "prime" are unary relations.
  6. see also Extension (predicate logic)
  7. Hailperin, Theodore (1953), "Quantification theory and empty individual-domains", The Journal of Symbolic Logic , Association for Symbolic Logic, 18 (3): 197–200, doi:10.2307/2267402, JSTOR   2267402, MR   0057820, S2CID   40988137
  8. Quine, W. V. (1954), "Quantification and the empty domain", The Journal of Symbolic Logic, Association for Symbolic Logic, 19 (3): 177–179, doi:10.2307/2268615, JSTOR   2268615, MR   0064715, S2CID   27053902
  9. Roland Müller (2009). "The Notion of a Model". In Anthonie Meijers (ed.). Philosophy of technology and engineering sciences. Handbook of the Philosophy of Science. Vol. 9. Elsevier. ISBN   978-0-444-51667-1.
  10. Rudolf Carnap (1958). Introduction to Symbolic Logic and its Applications . New York: Dover publications. ISBN   9780486604534.
  11. Hans Freudenthal, ed. (Jan 1960). The Concept and the Role of the Model in Mathematics and Natural and Social Sciences (Colloquium proceedings). Springer. ISBN   978-94-010-3669-6.
  12. Geoffrey Hunter (1992). Metalogic: An Introduction to the Metatheory of Standard First Order Logic. University of California Press.