List of Hilbert systems

Last updated

This article contains a list of sample Hilbert-style deductive systems for propositional logics.

Contents

Classical propositional calculus systems

Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically. Many different equivalent complete axiom systems have been formulated. They differ in the choice of basic connectives used, which in all cases have to be functionally complete (i.e. able to express by composition all n-ary truth tables), and in the exact complete choice of axioms over the chosen basis of connectives.

Implication and negation

The formulations here use implication and negation as functionally complete set of basic connectives. Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens:

We assume this rule is included in all systems below unless stated otherwise.

Frege's axiom system: [1]

Hilbert's axiom system: [1]

Łukasiewicz's axiom systems: [1]

Łukasiewicz and Tarski's axiom system: [2]

Meredith's axiom system:

Mendelson's axiom system: [3]

Russell's axiom system: [1]

Sobociński's axiom systems: [1]

Implication and falsum

Instead of negation, classical logic can also be formulated using the functionally complete set of connectives.

Tarski–BernaysWajsberg axiom system:

Church's axiom system:

Meredith's axiom systems:

Negation and disjunction

Instead of implication, classical logic can also be formulated using the functionally complete set of connectives. These formulations use the following rule of inference;

Russell–Bernays axiom system:

Meredith's axiom systems: [7]

Dually, classical propositional logic can be defined using only conjunction and negation.

Conjunction and negation

Rosser J. Barkley created a system based on conjunction and negation , with the modus ponens as inference rule. In his book, [8] he used the implication to present his axiom schemes. "" is an abbreviation for "":

If we don't use the abbreviation, we get the axiom schemes in the following form:

Also, modus ponens becomes:

Sheffer's stroke

Because Sheffer's stroke (also known as NAND operator) is functionally complete, it can be used to create an entire formulation of propositional calculus. NAND formulations use a rule of inference called Nicod's modus ponens:

Nicod's axiom system: [4]

Łukasiewicz's axiom systems: [4]

Wajsberg's axiom system: [4]

Argonne axiom systems: [4]

[9]

Computer analysis by Argonne has revealed over 60 additional single axiom systems that can be used to formulate NAND propositional calculus. [6]

Implicational propositional calculus

The implicational propositional calculus is the fragment of the classical propositional calculus which only admits the implication connective. It is not functionally complete (because it lacks the ability to express falsity and negation) but it is however syntactically complete. The implicational calculi below use modus ponens as an inference rule.

Bernays–Tarski axiom system: [10]

Łukasiewicz and Tarski's axiom systems:

Łukasiewicz's axiom system: [11] [10]

Intuitionistic and intermediate logics

Intuitionistic logic is a subsystem of classical logic. It is commonly formulated with as the set of (functionally complete) basic connectives. It is not syntactically complete since it lacks excluded middle A∨¬A or Peirce's law ((A→B)→A)→A which can be added without making the logic inconsistent. It has modus ponens as inference rule, and the following axioms:

Alternatively, intuitionistic logic may be axiomatized using as the set of basic connectives, replacing the last axiom with

Intermediate logics are in between intuitionistic logic and classical logic. Here are a few intermediate logics:

Positive implicational calculus

The positive implicational calculus is the implicational fragment of intuitionistic logic. The calculi below use modus ponens as an inference rule.

Łukasiewicz's axiom system:

Meredith's axiom systems:

Hilbert's axiom systems:

Positive propositional calculus

Positive propositional calculus is the fragment of intuitionistic logic using only the (non functionally complete) connectives . It can be axiomatized by any of the above-mentioned calculi for positive implicational calculus together with the axioms

Optionally, we may also include the connective and the axioms

Johansson's minimal logic can be axiomatized by any of the axiom systems for positive propositional calculus and expanding its language with the nullary connective , with no additional axiom schemas. Alternatively, it can also be axiomatized in the language by expanding the positive propositional calculus with the axiom

or the pair of axioms

Intuitionistic logic in language with negation can be axiomatized over the positive calculus by the pair of axioms

or the pair of axioms [14]

Classical logic in the language can be obtained from the positive propositional calculus by adding the axiom

or the pair of axioms

Fitch calculus takes any of the axiom systems for positive propositional calculus and adds the axioms [14]

Note that the first and third axioms are also valid in intuitionistic logic.

Equivalential calculus

Equivalential calculus is the subsystem of classical propositional calculus that only allows the (functionally incomplete) equivalence connective, denoted here as . The rule of inference used in these systems is as follows:

Iséki's axiom system: [15]

Iséki–Arai axiom system: [16]

Arai's axiom systems;

Łukasiewicz's axiom systems: [17]

Meredith's axiom systems: [17]

Kalman's axiom system: [17]

Winker's axiom systems: [17]

XCB axiom system: [17]

See also

Related Research Articles

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

In mathematical logic, sequent calculus is a style of formal logical argumentation in which every line of a proof is a conditional tautology instead of an unconditional tautology. Each conditional tautology is inferred from other conditional tautologies on earlier lines in a formal argument according to rules and procedures of inference, giving a better approximation to the natural style of deduction used by mathematicians than to David Hilbert's earlier style of formal logic, in which every line was an unconditional tautology. More subtle distinctions may exist; for example, propositions may implicitly depend upon non-logical axioms. In that case, sequents signify conditional theorems in a first-order language rather than conditional tautologies.

In propositional logic, double negation is the theorem that states that "If a statement is true, then it is not the case that the statement is not true." This is expressed by saying that a proposition A is logically equivalent to not (not-A), or by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.

A paraconsistent logic is an attempt at a logical system to deal with contradictions in a discriminating way. Alternatively, paraconsistent logic is the subfield of logic that is concerned with studying and developing "inconsistency-tolerant" systems of logic which reject the principle of explosion.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

In mathematical logic, Heyting arithmetic is an axiomatization of arithmetic in accordance with the philosophy of intuitionism. It is named after Arend Heyting, who first proposed it.

In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT.

In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.

In mathematical logic, monoidal t-norm based logic, the logic of left-continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic of commutative bounded integral residuated lattices by the axiom of prelinearity.

In mathematics and philosophy, Łukasiewicz logic is a non-classical, many-valued logic. It was originally defined in the early 20th century by Jan Łukasiewicz as a three-valued modal logic; it was later generalized to n-valued as well as infinitely-many-valued (0-valued) variants, both propositional and first order. The ℵ0-valued version was published in 1930 by Łukasiewicz and Alfred Tarski; consequently it is sometimes called the Łukasiewicz–Tarski logic. It belongs to the classes of t-norm fuzzy logics and substructural logics.

T-norm fuzzy logics are a family of non-classical logics, informally delimited by having a semantics that takes the real unit interval [0, 1] for the system of truth values and functions called t-norms for permissible interpretations of conjunction. They are mainly used in applied fuzzy logic and fuzzy set theory as a theoretical basis for approximate reasoning.

In mathematical logic, formation rules are rules for describing which strings of symbols formed from the alphabet of a formal language are syntactically valid within the language. These rules only address the location and manipulation of the strings of the language. It does not describe anything else about a language, such as its semantics. .

In mathematical logic, basic fuzzy logic, the logic of the continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices; it extends the logic MTL of all left-continuous t-norms.

Minimal logic, or minimal calculus, is a symbolic logic system originally developed by Ingebrigt Johansson. It is an intuitionistic and paraconsistent logic, that rejects both the law of the excluded middle as well as the principle of explosion, and therefore holding neither of the following two derivations as valid:

In logic, philosophy, and theoretical computer science, dynamic logic is an extension of modal logic capable of encoding properties of computer programs.

The Tseytin transformation, alternatively written Tseitin transformation, takes as input an arbitrary combinatorial logic circuit and produces an equisatisfiable boolean formula in conjunctive normal form (CNF). The length of the formula is linear in the size of the circuit. Input vectors that make the circuit output "true" are in 1-to-1 correspondence with assignments that satisfy the formula. This reduces the problem of circuit satisfiability on any circuit to the satisfiability problem on 3-CNF formulas. It was discovered by the Russian scientist Grigori Tseitin.

A non-normal modal logic is a variant of modal logic that deviates from the basic principles of normal modal logics.

References

  1. 1 2 3 4 5 Yasuyuki Imai, Kiyoshi Iséki, On axiom systems of propositional calculi, I, Proceedings of the Japan Academy. Volume 41, Number 6 (1965), 436439.
  2. Part XIII: Shôtarô Tanaka. On axiom systems of propositional calculi, XIII. Proc. Japan Acad., Volume 41, Number 10 (1965), 904907.
  3. Elliott Mendelson, Introduction to Mathematical Logic, Van Nostrand, New York, 1979, p. 31.
  4. 1 2 3 4 5 6 [Fitelson, 2001] "New Elegant Axiomatizations of Some Sentential Logics" by Branden Fitelson
  5. (Computer analysis by Argonne has revealed this to be the shortest single axiom with least variables for propositional calculus).
  6. 1 2 "Some New Results in Logical Calculi Obtained Using Automated Reasoning", Zac Ernst, Ken Harris, & Branden Fitelson, http://www.mcs.anl.gov/research/projects/AR/award-2001/fitelson.pdf
  7. C. Meredith, Single axioms for the systems (C, N), (C, 0) and (A, N) of the two-valued propositional calculus, Journal of Computing Systems, pp. 155–164, 1954.
  8. Rosser J. Barkley, "Logic for Mathematicians", New York, McGraw-Hill, 1953.
  9. , p. 9, A Spectrum of Applications of Automated Reasoning, Larry Wos; arXiv:cs/0205078v1
  10. 1 2 3 4 Investigations into the Sentential Calculus in Logic, Semantics, Metamathematics: Papers from 1923 to 1938 by Alfred Tarski, Corcoran, J., ed. Hackett. 1st edition edited and translated by J. H. Woodger, Oxford Uni. Press. (1956)
  11. Łukasiewicz, J.. (1948). The Shortest Axiom of the Implicational Calculus of Propositions. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 52, 25–33. Retrieved from https://www.jstor.org/stable/20488489
  12. 1 2 A. Chagrov, M. Zakharyaschev, Modal logic, Oxford University Press, 1997.
  13. C. Meredith, A single axiom of positive logic, Journal of Computing Systems, p. 169–170, 1954.
  14. 1 2 L. H. Hackstaff, Systems of Formal Logic, Springer, 1966.
  15. Kiyoshi Iséki, On axiom systems of propositional calculi, XV, Proceedings of the Japan Academy. Volume 42, Number 3 (1966), 217220.
  16. Yoshinari Arai, On axiom systems of propositional calculi, XVII, Proceedings of the Japan Academy. Volume 42, Number 4 (1966), 351354.
  17. 1 2 3 4 5 XCB, the Last of the Shortest Single Axioms for the Classical Equivalential Calculus, LARRY WOS, DOLPH ULRICH, BRANDEN FITELSON; arXiv:cs/0211015v1