Grothendieck universe

Last updated

In mathematics, a Grothendieck universe is a set U with the following properties:

Contents

  1. If x is an element of U and if y is an element of x, then y is also an element of U. (U is a transitive set.)
  2. If x and y are both elements of U, then is an element of U.
  3. If x is an element of U, then P(x), the power set of x, is also an element of U.
  4. If is a family of elements of U, and if I is an element of U, then the union is an element of U.

A Grothendieck universe is meant to provide a set in which all of mathematics can be performed. (In fact, uncountable Grothendieck universes provide models of set theory with the natural ∈-relation, natural powerset operation etc.). Elements of a Grothendieck universe are sometimes called small sets. The idea of universes is due to Alexander Grothendieck, who used them as a way of avoiding proper classes in algebraic geometry.

The existence of a nontrivial Grothendieck universe goes beyond the usual axioms of Zermelo–Fraenkel set theory; in particular it would imply the existence of strongly inaccessible cardinals. Tarski–Grothendieck set theory is an axiomatic treatment of set theory, used in some automatic proof systems, in which every set belongs to a Grothendieck universe. The concept of a Grothendieck universe can also be defined in a topos. [1]

Properties

As an example, we will prove an easy proposition.

Proposition. If and , then .
Proof. because . because , so .

It is similarly easy to prove that any Grothendieck universe U contains:

In particular, it follows from the last axiom that if U is non-empty, it must contain all of its finite subsets and a subset of each finite cardinality. One can also prove immediately from the definitions that the intersection of any class of universes is a universe.

Grothendieck universes and inaccessible cardinals

There are two simple examples of Grothendieck universes:

Other examples are more difficult to construct. Loosely speaking, this is because Grothendieck universes are equivalent to strongly inaccessible cardinals. More formally, the following two axioms are equivalent:

(U) For each set x, there exists a Grothendieck universe U such that xU.
(C) For each cardinal κ, there is a strongly inaccessible cardinal λ that is strictly larger than κ.

To prove this fact, we introduce the function c(U). Define:

where by |x| we mean the cardinality of x. Then for any universe U, c(U) is either zero or strongly inaccessible. Assuming it is non-zero, it is a strong limit cardinal because the power set of any element of U is an element of U and every element of U is a subset of U. To see that it is regular, suppose that cλ is a collection of cardinals indexed by I, where the cardinality of I and of each cλ is less than c(U). Then, by the definition of c(U), I and each cλ can be replaced by an element of U. The union of elements of U indexed by an element of U is an element of U, so the sum of the cλ has the cardinality of an element of U, hence is less than c(U). By invoking the axiom of foundation, that no set is contained in itself, it can be shown that c(U) equals |U|; when the axiom of foundation is not assumed, there are counterexamples (we may take for example U to be the set of all finite sets of finite sets etc. of the sets xα where the index α is any real number, and xα = {xα} for each α. Then U has the cardinality of the continuum, but all of its members have finite cardinality and so  ; see Bourbaki's article for more details).

Let κ be a strongly inaccessible cardinal. Say that a set S is strictly of type κ if for any sequence sn ∈ ... ∈ s0S, |sn| < κ. (S itself corresponds to the empty sequence.) Then the set u(κ) of all sets strictly of type κ is a Grothendieck universe of cardinality κ. The proof of this fact is long, so for details, we again refer to Bourbaki's article, listed in the references.

To show that the large cardinal axiom (C) implies the universe axiom (U), choose a set x. Let x0 = x, and for each n, let be the union of the elements of xn. Let y = . By (C), there is a strongly inaccessible cardinal κ such that |y| < κ. Let u(κ) be the universe of the previous paragraph. x is strictly of type κ, so xu(κ). To show that the universe axiom (U) implies the large cardinal axiom (C), choose a cardinal κ. κ is a set, so it is an element of a Grothendieck universe U. The cardinality of U is strongly inaccessible and strictly larger than that of κ.

In fact, any Grothendieck universe is of the form u(κ) for some κ. This gives another form of the equivalence between Grothendieck universes and strongly inaccessible cardinals:

For any Grothendieck universe U, |U| is either zero, , or a strongly inaccessible cardinal. And if κ is zero, , or a strongly inaccessible cardinal, then there is a Grothendieck universe . Furthermore, u(|U|) = U, and |u(κ)| = κ.

Since the existence of strongly inaccessible cardinals cannot be proved from the axioms of Zermelo–Fraenkel set theory (ZFC), the existence of universes other than the empty set and cannot be proved from ZFC either. However, strongly inaccessible cardinals are on the lower end of the list of large cardinals; thus, most set theories that use large cardinals (such as "ZFC plus there is a measurable cardinal", "ZFC plus there are infinitely many Woodin cardinals") will prove that Grothendieck universes exist.

See also

Notes

  1. Streicher, Thomas (2006). "Universes in Toposes" (PDF). From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics. Clarendon Press. pp. 78–90. ISBN   9780198566519.

Related Research Articles

Cardinal number Size of a possibly infinite set

In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol (aleph) followed by a subscript, describe the sizes of infinite sets.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Freiling's axiom of symmetry is a set-theoretic axiom proposed by Chris Freiling. It is based on intuition of Stuart Davidson but the mathematics behind it goes back to Wacław Sierpiński.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

In mathematics, a Mahlo cardinal is a certain kind of large cardinal number. Mahlo cardinals were first described by Paul Mahlo. As with all large cardinals, none of these varieties of Mahlo cardinals can be proven to exist by ZFC.

In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, and all singletons {α}, ακ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large.

Universe (mathematics) Collection that contains all the entities one wishes to consider in a given situation in mathematics

In mathematics, and particularly in set theory, category theory, type theory, and the foundations of mathematics, a universe is a collection that contains all the entities one wishes to consider in a given situation.

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In set theory and related branches of mathematics, the von Neumann universe, or von Neumann hierarchy of sets, denoted by V, is the class of hereditary well-founded sets. This collection, which is formalized by Zermelo–Fraenkel set theory (ZFC), is often used to provide an interpretation or motivation of the axioms of ZFC. The concept is named after John von Neumann, although it was first published by Ernst Zermelo in 1930.

In the foundations of mathematics, Morse–Kelley set theory (MK), Kelley–Morse set theory (KM), Morse–Tarski set theory (MT), Quine–Morse set theory (QM) or the system of Quine and Morse is a first-order axiomatic set theory that is closely related to von Neumann–Bernays–Gödel set theory (NBG). While von Neumann–Bernays–Gödel set theory restricts the bound variables in the schematic formula appearing in the axiom schema of Class Comprehension to range over sets alone, Morse–Kelley set theory allows these bound variables to range over proper classes as well as sets, as first suggested by Quine in 1940 for his system ML.

This article examines the implementation of mathematical concepts in set theory. The implementation of a number of basic mathematical concepts is carried out in parallel in ZFC and in NFU, the version of Quine's New Foundations shown to be consistent by R. B. Jensen in 1969.

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

Axiom of limitation of size

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

Tarski–Grothendieck set theory is an axiomatic set theory. It is a non-conservative extension of Zermelo–Fraenkel set theory (ZFC) and is distinguished from other axiomatic set theories by the inclusion of Tarski's axiom, which states that for each set there is a Grothendieck universe it belongs to. Tarski's axiom implies the existence of inaccessible cardinals, providing a richer ontology than that of conventional set theories such as ZFC. For example, adding this axiom supports category theory.

In set theory, an Aronszajn tree is a tree of uncountable height with no uncountable branches and no uncountable levels. For example, every Suslin tree is an Aronszajn tree. More generally, for a cardinal κ, a κ-Aronszajn tree is a tree of height κ in which all levels have size less than κ and all branches have height less than κ. They are named for Nachman Aronszajn, who constructed an Aronszajn tree in 1934; his construction was described by Kurepa (1935).

This is a glossary of set theory.

References