Hereditarily finite set

Last updated

In mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set.

Contents

Formal definition

A recursive definition of well-founded hereditarily finite sets is as follows:

Base case: The empty set is a hereditarily finite set.
Recursion rule: If are hereditarily finite, then so is .

Only sets that can be built by a finite number of applications of these two rules are hereditarily finite.

Representation

This class of sets is naturally ranked by the number of bracket pairs necessary to represent the sets:

In this way, the number of sets with bracket pairs is [1]

1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, 14426, ...

Discussion

The set is an example for such a hereditarily finite set and so is the empty set , as noted. On the other hand, the sets or are examples of finite sets that are not hereditarily finite. For example, the first cannot be hereditarily finite since it contains at least one infinite set as an element, when .

The class of all hereditarily finite sets is denoted by , meaning that the cardinality of each member is smaller than . (Analogously, the class of hereditarily countable sets is denoted by .) is in bijective correspondence with . It can also be denoted by , which denotes the th stage of the von Neumann universe. [2] So here it is a countable set.

Models

Ackermann coding

In 1937, Wilhelm Ackermann introduced an encoding of hereditarily finite sets as natural numbers. [3] [4] [5] It is defined by a function that maps each hereditarily finite set to a natural number, given by the following recursive definition:

For example, the empty set contains no members, and is therefore mapped to an empty sum, that is, the number zero. On the other hand, a set with distinct members is mapped to .

The inverse is given by

where BIT denotes the BIT predicate.

The Ackermann coding can be used to construct a model of finitary set theory in the natural numbers. More precisely, (where is the converse relation of , swapping its two arguments) models Zermelo–Fraenkel set theory ZF without the axiom of infinity. Here, each natural number models a set, and the relation models the membership relation between sets.

Graph models

The class can be seen to be in exact correspondence with a class of rooted trees, namely those without non-trivial symmetries (i.e. the only automorphism is the identity): The root vertex corresponds to the top level bracket and each edge leads to an element (another such set) that can act as a root vertex in its own right. No automorphism of this graph exist, corresponding to the fact that equal branches are identified (e.g. , trivializing the permutation of the two subgraphs of shape ). This graph model enables an implementation of ZF without infinity as data types and thus an interpretation of set theory in expressive type theories.

Graph models exist for ZF and also set theories different from Zermelo set theory, such as non-well founded theories. Such models have more intricate edge structure.

In graph theory, the graph whose vertices correspond to hereditarily finite sets and edges correspond to set membership is the Rado graph or random graph.

Axiomatizations

Theories of finite sets

In the common axiomatic set theory approaches, the empty set also represents the first von Neumann ordinal number, denoted . All finite von Neumann ordinals are indeed hereditarily finite and, thus, so is the class of sets representing the natural numbers. In other words, includes each element in the standard model of natural numbers and so a set theory expressing must necessarily contain them as well.

Now note that Robinson arithmetic can already be interpreted in ST, the very small sub-theory of Zermelo set theory Z with its axioms given by Extensionality, Empty Set and Adjunction. All of has a constructive axiomatization involving these axioms and e.g. Set induction and Replacement.

Axiomatically characterizing the theory of hereditarily finite sets, the negation of the axiom of infinity may be added. As the theory validates the other axioms of , this establishes that the axiom of infinity is not a consequence these other axioms.

ZF

V
4
{\displaystyle ~V_{4}~}
represented with circles in place of curly brackets Nested set V4.svg
represented with circles in place of curly brackets      Loupe light.svg

The hereditarily finite sets are a subclass of the Von Neumann universe. Here, the class of all well-founded hereditarily finite sets is denoted . Note that this is also a set in this context.

If we denote by the power set of , and by the empty set, then can be obtained by setting for each integer . Thus, can be expressed as

and all its elements are finite.

This formulation shows, again, that there are only countably many hereditarily finite sets: is finite for any finite , its cardinality is in Knuth's up-arrow notation (a tower of powers of two), and the union of countably many finite sets is countable.

Equivalently, a set is hereditarily finite if and only if its transitive closure is finite.

See also

Related Research Articles

In mathematics, specifically set theory, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:

"There is no set whose cardinality is strictly between that of the integers and the real numbers."

<span class="mw-page-title-main">Cardinal number</span> Size of a possibly infinite set

In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set. In the case of a finite set, its cardinal number, or cardinality is therefore a natural number. For dealing with the case of infinite sets, the infinite cardinal numbers have been introduced, which are often denoted with the Hebrew letter (aleph) marked with subscript indicating their rank among the infinite cardinals.

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than aleph-null, the cardinality of the natural numbers.

In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object .

In mathematics, transfinite numbers or infinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term transfinite was coined in 1895 by Georg Cantor, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term transfinite also remains in use.

In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.

<span class="mw-page-title-main">Aleph number</span> Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph (ℵ).

The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set U, we define its cardinal number to be the smallest ordinal number equinumerous to U, using the von Neumann definition of an ordinal number. More precisely:

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the Hebrew letter beth. The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

<span class="mw-page-title-main">Axiom of countable choice</span>

The axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function with domain such that is a non-empty set for every , there exists a function with domain such that for every .

In mathematics, set-theoretic topology is a subject that combines set theory and general topology. It focuses on topological questions that are independent of Zermelo–Fraenkel set theory (ZFC).

In model theory, a branch of mathematical logic, the spectrum of a theory is given by the number of isomorphism classes of models in various cardinalities. More precisely, for any complete theory T in a language we write I(T, κ) for the number of models of T (up to isomorphism) of cardinality κ. The spectrum problem is to describe the possible behaviors of I(T, κ) as a function of κ. It has been almost completely solved for the case of a countable theory T.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In set theory, a code for a hereditarily countable set

<span class="mw-page-title-main">Axiom of limitation of size</span>

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

<span class="mw-page-title-main">Ordinal number</span> Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

This is a glossary of terms and definitions related to the topic of set theory.

References

  1. Sloane, N. J. A. (ed.). "SequenceA004111". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. "hereditarily finite set". nLab. January 2023. Retrieved January 28, 2023. The set of all (well-founded) hereditarily finite sets (which is infinite, and not hereditarily finite itself) is written to show its place in the von Neumann hierarchy of pure sets.
  3. Ackermann, Wilhelm (1937). "Die Widerspruchsfreiheit der allgemeinen Mengenlehre". Mathematische Annalen . 114: 305–315. doi:10.1007/bf01594179. S2CID   120576556 . Retrieved 2012-01-09.
  4. Kirby, Laurence (2009). "Finitary Set Theory". Notre Dame Journal of Formal Logic. 50 (3): 227–244. doi: 10.1215/00294527-2009-009 .
  5. Omodeo, Eugenio G.; Policriti, Alberto; Tomescu, Alexandru I. (2017). "3.3: The Ackermann encoding of hereditarily finite sets". On Sets and Graphs: Perspectives on Logic and Combinatorics. Springer. pp. 70–71. doi:10.1007/978-3-319-54981-1. ISBN   978-3-319-54980-4. MR   3558535.