Hereditary property

Last updated

In mathematics, a hereditary property is a property of an object that is inherited by all of its subobjects, where the meaning of subobject depends on the context. These properties are particularly considered in topology and graph theory, but also in set theory.

Contents

In topology

In topology, a topological property is said to be hereditary if whenever a topological space has that property, then so does every subspace of it. If the latter is true only for closed subspaces, then the property is called weakly hereditary or closed-hereditary.

For example, second countability and metrisability are hereditary properties. Sequentiality and Hausdorff compactness are weakly hereditary, but not hereditary. [1] Connectivity is not weakly hereditary.

If P is a property of a topological space X and every subspace also has property P, then X is said to be "hereditarily P".

In combinatorics and graph theory

Hereditary properties occur throughout combinatorics and graph theory, although they are known by a variety of names. For example, in the context of permutation patterns, hereditary properties are typically called permutation classes.

In graph theory

In graph theory, a hereditary property usually means a property of a graph which also holds for (is "inherited" by) its induced subgraphs. [2] Equivalently, a hereditary property is preserved by the removal of vertices. A graph class is called hereditary if it is closed under induced subgraphs. Examples of hereditary graph classes are independent graphs (graphs with no edges), which is a special case (with c = 1) of being c-colorable for some number c, being forests, planar, complete, complete multipartite etc.

Sometimes the term "hereditary" has been defined with reference to graph minors; then it may be called a minor-hereditary property. The Robertson–Seymour theorem implies that a minor-hereditary property may be characterized in terms of a finite set of forbidden minors.

The term "hereditary" has been also used for graph properties that are closed with respect to taking subgraphs. [3] In such a case, properties that are closed with respect to taking induced subgraphs, are called induced-hereditary. The language of hereditary properties and induced-hereditary properties provides a powerful tool for study of structural properties of various types of generalized colourings. The most important result from this area is the unique factorization theorem. [4]

Monotone property

There is no consensus for the meaning of "monotone property" in graph theory. Examples of definitions are:

  • Preserved by the removal of edges. [5]
  • Preserved by the removal of edges and vertices (i.e., the property should hold for all subgraphs). [2]
  • Preserved by the addition of edges and vertices (i.e., the property should hold for all supergraphs). [6]
  • Preserved by the addition of edges. [7] (This meaning is used in the statement of the Aanderaa–Karp–Rosenberg conjecture.)

The complementary property of a property that is preserved by the removal of edges is preserved under the addition of edges. Hence some authors avoid this ambiguity by saying a property A is monotone if A or AC (the complement of A) is monotone. [8] Some authors choose to resolve this by using the term increasing monotone for properties preserved under the addition of some object, and decreasing monotone for those preserved under the removal of the same object.

In matroid theory

In a matroid, every subset of an independent set is again independent. This is a hereditary property of sets.

A family of matroids may have a hereditary property. For instance, a family that is closed under taking matroid minors may be called "hereditary".

In problem solving

In planning and problem solving, or more formally one-person games, the search space is seen as a directed graph with states as nodes, and transitions as edges. States can have properties, and such a property P is hereditary if for each state S that has P, each state that can be reached from S also has P.

The subset of all states that have P plus the subset of all states that have ~P form a partition of the set of states called a hereditary partition. This notion can trivially be extended to more discriminating partitions by instead of properties, considering aspects of states and their domains. If states have an aspect A, with diD a partition of the domain D of A, then the subsets of states for which Adi form a hereditary partition of the total set of states iff ∀i, from any state where Adi only other states where Adi can be reached.

If the current state and the goal state are in different elements of a hereditary partition, there is no path from the current state to the goal state — the problem has no solution.

Can a checkers board be covered with domino tiles, each of which covers exactly two adjacent fields? Yes. What if we remove the top left and the bottom right field? Then no covering is possible any more, because the difference between number of uncovered white fields and the number of uncovered black fields is 2, and adding a domino tile (which covers one white and one black field) keeps that number at 2. For a total covering the number is 0, so a total covering cannot be reached from the start position.

This notion was first introduced by Laurent Siklóssy and Roach. [9]

In model theory

In model theory and universal algebra, a class K of structures of a given signature is said to have the hereditary property if every substructure of a structure in K is again in K. A variant of this definition is used in connection with Fraïssé's theorem: A class K of finitely generated structures has the hereditary property if every finitely generated substructure is again in K. See age.

In set theory

Recursive definitions using the adjective "hereditary" are often encountered in set theory.

A set is said to be hereditary (or pure) if all of its elements are hereditary sets. It is vacuously true that the empty set is a hereditary set, and thus the set containing only the empty set is a hereditary set, and recursively so is , for example. In formulations of set theory that are intended to be interpreted in the von Neumann universe or to express the content of Zermelo–Fraenkel set theory, all sets are hereditary, because the only sort of object that is even a candidate to be an element of a set is another set. Thus the notion of hereditary set is interesting only in a context in which there may be urelements.

A couple of notions are defined analogously:

Based on the above, it follows that in ZFC a more general notion can be defined for any predicate . A set x is said to have hereditarily the property if x itself and all members of its transitive closure satisfy , i.e. . Equivalently, x hereditarily satisfies iff it is a member of a transitive subset of [10] [11] A property (of a set) is thus said to be hereditary if it is inherited by every subset. For example, being well-ordered is a hereditary property, and so it being finite. [12]

If we instantiate in the above schema with "x has cardinality less than κ", we obtain the more general notion of a set being hereditarily of cardinality less than κ, usually denoted by [13] or . We regain the two simple notions we introduced above as being the set of hereditarily finite sets and being the set of hereditarily countable sets. [14] ( is the first uncountable ordinal.)

Related Research Articles

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology. For a list of terms specific to algebraic topology, see Glossary of algebraic topology.

<span class="mw-page-title-main">Hypergraph</span> Generalization of graph theory

In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.

In combinatorics, a branch of mathematics, a matroid is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.

In mathematics, a Lindelöf space is a topological space in which every open cover has a countable subcover. The Lindelöf property is a weakening of the more commonly used notion of compactness, which requires the existence of a finite subcover.

In mathematics, and more particularly in set theory, a cover of a set is a family of subsets of whose union is all of . More formally, if is an indexed family of subsets , then is a cover of if . Thus the collection is a cover of if each element of belongs to at least one of the subsets .

This is a glossary of graph theory. Graph theory is the study of graphs, systems of nodes or vertices connected in pairs by lines or edges.

This is a glossary of some terms used in various branches of mathematics that are related to the fields of order, lattice, and domain theory. Note that there is a structured list of order topics available as well. Other helpful resources might be the following overview articles:

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

Pregeometry, and in full combinatorial pregeometry, are essentially synonyms for "matroid". They were introduced by Gian-Carlo Rota with the intention of providing a less "ineffably cacophonous" alternative term. Also, the term combinatorial geometry, sometimes abbreviated to geometry, was intended to replace "simple matroid". These terms are now infrequently used in the study of matroids.

In set theory, a prewellordering on a set is a preorder on that is strongly connected and well-founded in the sense that the induced relation defined by is a well-founded relation.

In set theory, a branch of mathematics, a reflection principle says that it is possible to find sets that, with respect to any given property, resemble the class of all sets. There are several different forms of the reflection principle depending on exactly what is meant by "resemble". Weak forms of the reflection principle are theorems of ZF set theory due to Montague (1961), while stronger forms can be new and very powerful axioms for set theory.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann. The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

In mathematics, a separoid is a binary relation between disjoint sets which is stable as an ideal in the canonical order induced by inclusion. Many mathematical objects which appear to be quite different, find a common generalisation in the framework of separoids; e.g., graphs, configurations of convex sets, oriented matroids, and polytopes. Any countable category is an induced subcategory of separoids when they are endowed with homomorphisms.

András Hajnal was a professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics.

In graph theory, the De Bruijn–Erdős theorem relates graph coloring of an infinite graph to the same problem on its finite subgraphs. It states that, when all finite subgraphs can be colored with colors, the same is true for the whole graph. The theorem was proved by Nicolaas Govert de Bruijn and Paul Erdős, after whom it is named.

In the mathematics of infinite graphs, an end of a graph represents, intuitively, a direction in which the graph extends to infinity. Ends may be formalized mathematically as equivalence classes of infinite paths, as havens describing strategies for pursuit–evasion games on the graph, or as topological ends of topological spaces associated with the graph.

This is a glossary of terms and definitions related to the topic of set theory.

<span class="mw-page-title-main">Half graph</span> Type of graph in mathematics

In graph theory, a branch of mathematics, a half graph is a special type of bipartite graph. These graphs are called the half graphs because they have approximately half of the edges of a complete bipartite graph on the same vertices. The name was given to these graphs by Paul Erdős and András Hajnal.

References

  1. Goreham, Anthony (2016). "Sequential convergence in topological spaces". arXiv: math/0412558 .
  2. 1 2 Alon, Noga; Shapira, Asaf (2008). "Every monotone graph property is testable" (PDF). SIAM Journal on Computing. 38 (2): 505–522. CiteSeerX   10.1.1.108.2303 . doi:10.1137/050633445.
  3. Borowiecki, Mieczysław; Broere, Izak; Frick, Marietjie; Mihók, Peter; Semanišin, Gabriel (1997), "A survey of hereditary properties of graphs", Discussiones Mathematicae Graph Theory, 17 (1): 5–50, doi:10.7151/dmgt.1037, MR   1633268
  4. Farrugia, Alastair (2005). "Factorizations and characterizations of induced-hereditary and compositive properties". Journal of Graph Theory . 49 (1): 11–27. doi: 10.1002/jgt.20062 . S2CID   12689856.
  5. King, R (1990). "A lower bound for the recognition of digraph properties". Combinatorica. 10: 53–59. doi:10.1007/bf02122695. S2CID   31532357.
  6. Achlioptas, D.; Friedgut, E. (1999). "A sharp threshold for k-colorability". Random Structures & Algorithms. 14 (1): 63–70. CiteSeerX   10.1.1.127.4597 . doi:10.1002/(SICI)1098-2418(1999010)14:1<63::AID-RSA3>3.0.CO;2-7.
  7. Spinrad, J. (2003). Efficient Graph Representations. AMS Bookstore. p. 9. ISBN   0-8218-2815-0.
  8. Goel, Ashish; Sanatan Rai; Bhaskar Krishnamachari (2003). "Monotone properties of random geometric graphs have sharp thresholds". Annals of Applied Probability. 15 (4): 2535–2552. arXiv: math/0310232 . doi:10.1214/105051605000000575. S2CID   685451.
  9. Siklossy, L.; Roach, J. (1973). "Proving the impossible is impossible is possible: disproofs based on hereditary partitions". Proceedings of the 3rd international joint conference on Artificial intelligence (IJCAI'73). Morgan Kaufmann. pp. 383–7.
  10. Levy, Azriel (2002). Basic Set Theory. Dover. pp.  82. ISBN   978-0-486-42079-0.
  11. Forster, Thomas (2003). Logic, Induction and Sets. Cambridge University Press. pp.  197. ISBN   978-0-521-53361-4.
  12. Roitman, Judith (1990). Introduction to modern set theory. Wiley. pp.  10. ISBN   978-0-471-63519-2.
  13. Levy 2002 , p.  137
  14. Kunen, Kenneth (2014) [1980]. Set Theory An Introduction To Independence Proofs. Studies in Logic and the Foundations of Mathematics. Vol. 102. Elsevier. p. 131. ISBN   978-0-08-057058-7.