Permutation pattern

Last updated

In combinatorial mathematics and theoretical computer science, a (classical) permutation pattern is a sub-permutation of a longer permutation. Any permutation may be written in one-line notation as a sequence of entries representing the result of applying the permutation to the sequence 123...; for instance the sequence 213 represents the permutation on three elements that swaps elements 1 and 2. If π and σ are two permutations represented in this way (these variable names are standard for permutations and are unrelated to the number pi), then π is said to contain σ as a pattern if some subsequence of the entries of π has the same relative order as all of the entries of σ.

Contents

For instance, permutation π contains the pattern 213 whenever π has three entries x, y, and z that appear within π in the order x...y...z but whose values are ordered as y < x < z, the same as the ordering of the values in the permutation 213.

The permutation 32415 on five elements contains 213 as a pattern in several different ways: 3··15, ··415, 32··5, 324··, and ·2·15 all form triples of entries with the same ordering as 213. Note that the entries do not need to be consecutive. Each of the subsequences 315, 415, 325, 324, and 215 is called a copy,instance, or occurrence of the pattern. The fact that π contains σ is written more concisely as σ π.

If a permutation π does not contain a pattern σ, then π is said to avoid σ. The permutation 51342 avoids 213; it has ten subsequences of three entries, but none of these ten subsequences has the same ordering as 213.

Early results

A case can be made that PercyMacMahon  ( 1915 ) was the first to prove a result in the field with his study of "lattice permutations". [1] In particular MacMahon shows that the permutations which can be divided into two decreasing subsequences (i.e., the 123-avoiding permutations) are counted by the Catalan numbers. [2]

Another early landmark result in the field is the Erdős–Szekeres theorem; in permutation pattern language, the theorem states that for any positive integers a and b every permutation of length at least must contain either the pattern or the pattern .

Computer science origins

The study of permutation patterns began in earnest with Donald Knuth's consideration of stack-sorting in 1968. [3] Knuth showed that the permutation π can be sorted by a stack if and only if π avoids 231, and that the stack-sortable permutations are enumerated by the Catalan numbers. [4] Knuth also raised questions about sorting with deques. In particular, Knuth's question asking how many permutation of n elements are obtainable with the use of a deque remains open. [5] Shortly thereafter, RobertTarjan  ( 1972 ) investigated sorting by networks of stacks, [6] while VaughanPratt  ( 1973 ) showed that the permutation π can be sorted by a deque if and only if for all k, π avoids 5,2,7,4,...,4k+1,4k2,3,4k,1, and 5,2,7,4,...,4k+3,4k,1,4k+2,3, and every permutation that can be obtained from either of these by interchanging the last two elements or the 1 and the 2. [7] Because this collection of permutations is infinite (in fact, it is the first published example of an infinite antichain of permutations), it is not immediately clear how long it takes to decide if a permutation can be sorted by a deque. Rosenstiehl & Tarjan (1984) later presented a linear (in the length of π) time algorithm which determines if π can be sorted by a deque. [8]

In his paper, Pratt remarked that this permutation pattern order “seems to be the only partial order on permutation that arises in a simple and natural way” and concludes by noting that “from an abstract point of view”, the permutation pattern order “is even more interesting than the networks we were characterizing”. [7]

Enumerative origins

A prominent goal in the study of permutation patterns is in the enumeration of permutations avoiding a fixed (and typically short) permutation or set of permutations. Let Avn(B) denote the set of permutations of length n which avoid all of the permutations in the set B. (In the case B is a singleton, say {β}, the abbreviation Avn(β) is used instead.) As noted above, MacMahon and Knuth showed that |Avn(123)| = |Avn(231)| = Cn, the nth Catalan number. Thus these are isomorphic combinatorial classes.

Simion & Schmidt (1985) was the first paper to focus solely on enumeration. Among other results, Simion and Schmidt counted even and odd permutations avoiding a pattern of length three, counted permutations avoiding two patterns of length three, and gave the first bijective proof that 123- and 231-avoiding permutations are equinumerous. [9] Since their paper, many other bijections have been given, see Claesson & Kitaev (2008) for a survey. [10]

In general, if |Avn(β)| = |Avn(σ)| for all n, then β and σ are said to be Wilf-equivalent. Many Wilf-equivalences stem from the trivial fact that |Avn(β)| = |Avn(β1)| = |Avn(βrev)| for all n, where β1 denotes the inverse of β and βrev denotes the reverse of β. (These two operations generate the Dihedral group D8 with a natural action on permutation matrices.) However, there are also numerous examples of nontrivial Wilf-equivalences (such as that between 123 and 231):

From these two Wilf-equivalences and the inverse and reverse symmetries, it follows that there are three different sequences |Avn(β)| where β is of length four:

βsequence enumerating Avn(β) OEIS referenceexact enumeration reference
 1342 1, 2, 6, 23, 103, 512, 2740, 15485, 91245, 555662, ... A022558 Bóna (1997) [14]
 1234 1, 2, 6, 23, 103, 513, 2761, 15767, 94359, 586590, ... A005802 Gessel (1990) [15]
 1324 1, 2, 6, 23, 103, 513, 2762, 15793, 94776, 591950, ... A061552 unenumerated

In the late 1980s, Richard Stanley and Herbert Wilf conjectured that for every permutation β, there is some constant K such that |Avn(β)| < Kn. This was known as the Stanley–Wilf conjecture until it was proved by Adam Marcus and Gábor Tardos. [16]

Closed classes

A closed class, also known as a pattern class, permutation class, or simply class of permutations is a downset in the permutation pattern order. Every class can be defined by the minimal permutations which do not lie inside it, its basis. Thus the basis for the stack-sortable permutations is {231}, while the basis for the deque-sortable permutations is infinite. The generating function for a class is Σ x|π| where the sum is taken over all permutations π in the class.

Möbius function

As the set of permutations under the containment order forms a poset it is natural to ask about its Möbius function, a goal first explicitly presented by Wilf (2002). [17] The goal in such investigations is to find a formula for the Möbius function of an interval [σ, π] in the permutation pattern poset which is more efficient than the naïve recursive definition. The first such result was established by Sagan & Vatter (2006), who gave a formula for the Möbius function of an interval of layered permutations. [18] Later, Burstein et al. (2011) generalized this result to intervals of separable permutations. [19]

It is known that, asymptotically, at least 39.95% of all permutations π of length n satisfy μ(1, π)=0 (that is, the principal Möbius function is equal to zero), [20] but for each n there exist permutations π such that μ(1, π) is an exponential function of n. [21]

Computational complexity

Given a permutation (called the text) of length and another permutation of length (called the pattern), the permutation pattern matching (PPM) problem asks whether is contained in . When both and are regarded as variables, the problem is known to be NP-complete, and the problem of counting the number of such matches is #P-complete. [22] However, PPM can be solved in linear time when k is a constant. Indeed, Guillemot and Marx [23] showed that PPM can be solved in time , meaning that it is fixed-parameter tractable with respect to .

There are several variants on the PPM problem, as surveyed by Bruner and Lackner. [24] For example, if the match is required to consist of contiguous entries then the problem can be solved in polynomial time. [25] A different natural variant is obtained when the pattern is restricted to a proper permutation class . This problem is known as -Pattern PPM and it was shown to be polynomial-time solvable for separable permutations. [22] Later, Jelínek and Kynčl [26] completely resolved the complexity of -Pattern PPM by showing that it is polynomial-time solvable when is equal to one of 1, 12, 21, 132, 231, 312 or 213 and NP-complete otherwise.

Another variant is when both the pattern and text are restricted to a proper permutation class , in which case the problem is called -PPM. For example, Guillemot and Vialette [27] showed that -PPM could be solved in time. Albert, Lackner, Lackner, and Vatter [28] later lowered this to and showed that the same bound holds for the class of skew-merged permutations. They further asked if the -PPM problem can be solved in polynomial time for every fixed proper permutation class . This question was answered negatively by Jelínek and Kynčl who showed that -PPM is in fact NP-complete. [26] Later, Jelínek, Opler, and Pekárek [29] showed that -PPM is NP-complete for any of length at least 4 not symmetric to one of 3412, 3142, 4213, 4123 or 41352.

Packing densities

The permutation π is said to be β-optimal if no permutation of the same length as π has more copies of β. In his address to the SIAM meeting on Discrete Mathematics in 1992, Wilf defined the packing density of the permutation β of length k as

An unpublished argument of Fred Galvin shows that the quantity inside this limit is nonincreasing for nk, and so the limit exists. When β is monotone, its packing density is clearly 1, and packing densities are invariant under the group of symmetries generated by inverse and reverse, so for permutations of length three, there is only one nontrivial packing density. Walter Stromquist (unpublished) settled this case by showing that the packing density of 132 is 23  3, approximately 0.46410.

For permutations β of length four, there are (due to symmetries) seven cases to consider:

βpacking densityreference
 1234 1trivial
 1432 root of x3 12x2 + 156x 64 0.42357 Price (1997) [30]
 2143 3/8 = 0.375 Price (1997) [30]
 1243 3/8 = 0.375 Albert et al. (2002) [31]
 1324 conjectured to be 0.244
 1342 conjectured to be 0.19658
 2413 conjectured to be 0.10474

For the three unknown permutations, there are bounds and conjectures. Price (1997) used an approximation algorithm which suggests that the packing density of 1324 is around 0.244. [30] Birzhan Batkeyev (unpublished) constructed a family of permutations showing that the packing density of 1342 is at least the product of the packing densities of 132 and 1432, approximately 0.19658. This is conjectured to be the precise packing density of 1342. Presutti & Stromquist (2010) provided a lower bound on the packing density of 2413. This lower bound, which can be expressed in terms of an integral, is approximately 0.10474, and conjectured to be the true packing density. [32]

Superpatterns

A k-superpattern is a permutation that contains all permutations of length k. For example, 25314 is a 3-superpattern because it contains all 6 permutations of length 3. It is known that k-superpatterns must have length at least k2/e2, where e  2.71828 is Euler's number, [33] and that there exist k-superpatterns of length ⌈(k2 + 1)/2⌉. [34] This upper bound is conjectured to be best possible, up to lower-order terms. [35]

Generalizations

The type of pattern defined above, in which entries do not need to occur consecutively, is called a classical (permutation) pattern. If the entries are required to be consecutive, then the pattern is called a consecutive pattern.

There are several ways in which the notion of "pattern" has been generalized. For example, a vincular pattern is a permutation containing dashes indicating which adjacent pairs of entries need not occur consecutively. For example, the permutation 314265 has two copies of the dashed pattern 2314, given by the entries 3426 and 3425. For a dashed pattern β and any permutation π, we write β(π) for the number of copies of β in π. Thus the number of inversions in π is 21(π), while the number of descents is 21(π). Going further, the number of valleys in π is 213(π) + 312(π), while the number of peaks is 231(π) + 132(π). These patterns were introduced by Babson & Steingrímsson (2000), who showed that almost all known Mahonian statistics could be expressed in terms of vincular permutations. [36] For example, the Major index of π is equal to 132(π) + 231(π) + 321(π) + 21(π).

Another generalization is that of a barred pattern, in which some of the entries are barred. For π to avoid the barred pattern β means that every set of entries of π which form a copy of the nonbarred entries of β can be extended to form a copy of all entries of β. West (1993) introduced these types of patterns in his study of permutations which could be sorted by passing them twice through a stack. [37] (Note that West's definition of sorting twice through a stack is not the same as sorting with two stacks in series.) Another example of barred patterns occurs in the work of Bousquet-Mélou & Butler (2007), who showed that the Schubert variety corresponding to π is locally factorial if and only if π avoids 1324 and 21354. [38]

Related Research Articles

<span class="mw-page-title-main">Permutation</span> Mathematical version of an order change

In mathematics, a permutation of a set can mean one of two different things:

In combinatorial mathematics, the Bell numbers count the possible partitions of a set. These numbers have been studied by mathematicians since the 19th century, and their roots go back to medieval Japan. In an example of Stigler's law of eponymy, they are named after Eric Temple Bell, who wrote about them in the 1930s.

<span class="mw-page-title-main">Double factorial</span> Mathematical function

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity as n. That is,

In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004, states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number k, there exist arithmetic progressions of primes with k terms. The proof is an extension of Szemerédi's theorem. The problem can be traced back to investigations of Lagrange and Waring from around 1770.

In the mathematical study of permutations and permutation patterns, a superpattern or universal permutation is a permutation that contains all of the patterns of a given length. More specifically, a k-superpattern contains all possible patterns of length k.

The Stanley–Wilf conjecture, formulated independently by Richard P. Stanley and Herbert Wilf in the late 1980s, states that the growth rate of every proper permutation class is singly exponential. It was proved by Adam Marcus and Gábor Tardos and is no longer a conjecture. Marcus and Tardos actually proved a different conjecture, due to Zoltán Füredi and Péter Hajnal, which had been shown to imply the Stanley–Wilf conjecture by Klazar (2000).

<span class="mw-page-title-main">Möbius aromaticity</span>

In organic chemistry, Möbius aromaticity is a special type of aromaticity believed to exist in a number of organic molecules. In terms of molecular orbital theory these compounds have in common a monocyclic array of molecular orbitals in which there is an odd number of out-of-phase overlaps, the opposite pattern compared to the aromatic character to Hückel systems. The nodal plane of the orbitals, viewed as a ribbon, is a Möbius strip, rather than a cylinder, hence the name. The pattern of orbital energies is given by a rotated Frost circle (with the edge of the polygon on the bottom instead of a vertex), so systems with 4n electrons are aromatic, while those with 4n + 2 electrons are anti-aromatic/non-aromatic. Due to incrementally twisted nature of the orbitals of a Möbius aromatic system, stable Möbius aromatic molecules need to contain at least 8 electrons, although 4 electron Möbius aromatic transition states are well known in the context of the Dewar-Zimmerman framework for pericyclic reactions. Möbius molecular systems were considered in 1964 by Edgar Heilbronner by application of the Hückel method, but the first such isolable compound was not synthesized until 2003 by the group of Rainer Herges. However, the fleeting trans-C9H9+ cation, one conformation of which is shown on the right, was proposed to be a Möbius aromatic reactive intermediate in 1998 based on computational and experimental evidence.

<span class="mw-page-title-main">Inversion (discrete mathematics)</span> Pair of positions in a sequence where two elements are out of sorted order

In computer science and discrete mathematics, an inversion in a sequence is a pair of elements that are out of their natural order.

<span class="mw-page-title-main">Tracy–Widom distribution</span> Probability distribution

The Tracy–Widom distribution is a probability distribution from random matrix theory introduced by Craig Tracy and Harold Widom. It is the distribution of the normalized largest eigenvalue of a random Hermitian matrix. The distribution is defined as a Fredholm determinant.

In the study of permutation patterns, there has been considerable interest in enumerating specific permutation classes, especially those with relatively few basis elements. This area of study has turned up unexpected instances of Wilf equivalence, where two seemingly-unrelated permutation classes have the same numbers of permutations of each length.

In combinatorial mathematics, a partial permutation, or sequence without repetition, on a finite set S is a bijection between two specified subsets of S. That is, it is defined by two subsets U and V of equal size, and a one-to-one mapping from U to V. Equivalently, it is a partial function on S that can be extended to a permutation.

In combinatorics, the skew sum and direct sum of permutations are two operations to combine shorter permutations into longer ones. Given a permutation π of length m and the permutation σ of length n, the skew sum of π and σ is the permutation of length m + n defined by

In combinatorial mathematics, a Baxter permutation is a permutation which satisfies the following generalized pattern avoidance property:

In mathematics and computer science, a stack-sortable permutation is a permutation whose elements may be sorted by an algorithm whose internal storage is limited to a single stack data structure. The stack-sortable permutations are exactly the permutations that do not contain the permutation pattern 231; they are counted by the Catalan numbers, and may be placed in bijection with many other combinatorial objects with the same counting function including Dyck paths and binary trees.

Rodica Eugenia Simion was a Romanian-American mathematician. She was the Columbian School Professor of Mathematics at George Washington University. Her research concerned combinatorics: she was a pioneer in the study of permutation patterns, and an expert on noncrossing partitions.

In the study of permutations and permutation patterns, a permutation class is a set of permutations for which every pattern within a permutation in is also in . In other words, a permutation class is a hereditary property of permutations, or a downset in the permutation pattern order. A permutation class may also be known as a pattern class, closed class, or simply class of permutations.

Algebraic Eraser (AE) is an anonymous key agreement protocol that allows two parties, each having an AE public–private key pair, to establish a shared secret over an insecure channel. This shared secret may be directly used as a key, or to derive another key that can then be used to encrypt subsequent communications using a symmetric key cipher. Algebraic Eraser was developed by Iris Anshel, Michael Anshel, Dorian Goldfeld and Stephane Lemieux. SecureRF owns patents covering the protocol and unsuccessfully attempted to standardize the protocol as part of ISO/IEC 29167-20, a standard for securing radio-frequency identification devices and wireless sensor networks.

In the mathematics of permutations, a layered permutation is a permutation that reverses contiguous blocks of elements. Equivalently, it is the direct sum of decreasing permutations.

<span class="mw-page-title-main">Affine symmetric group</span> Mathematical structure

The affine symmetric groups are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. In addition to this geometric description, the affine symmetric groups may be defined in other ways: as collections of permutations (rearrangements) of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied in combinatorics and representation theory.

Aaron Robertson is an American mathematician who specializes in Ramsey theory. He is a professor at Colgate University.

References

  1. MacMahon, Percy A. (1915), Combinatory Analysis, London: Cambridge University Press, Volume I, Section III, Chapter V .
  2. MacMahon (1915), Items 97 and 98.
  3. Knuth, Donald E. (1968), The Art Of Computer Programming Vol. 1 , Boston: Addison-Wesley, ISBN   0-201-89683-4, MR   0286317, OCLC   155842391 .
  4. Knuth (1968), Section 2.2.1, Exercises 4 and 5.
  5. Knuth (1968), Section 2.2.1, Exercise 13, rated M49 in the first printing, and M48 in the second.
  6. Tarjan, Robert (1972), "Sorting using networks of queues and stacks", Journal of the ACM , 19 (2): 341–346, doi: 10.1145/321694.321704 , MR   0298803, S2CID   13608929 .
  7. 1 2 Pratt, Vaughan R. (1973), "Computing permutations with double-ended queues. Parallel stacks and parallel queues", Proc. Fifth Annual ACM Symposium on Theory of Computing (Austin, Tex., 1973) , pp. 268–277, doi: 10.1145/800125.804058 , MR   0489115, S2CID   15740957 .
  8. Rosenstiehl, Pierre; Tarjan, Robert (1984), "Gauss codes, planar Hamiltonian graphs, and stack-sortable permutations", Journal of Algorithms, 5 (3): 375–390, doi:10.1016/0196-6774(84)90018-X, MR   0756164 .
  9. Simion, Rodica; Schmidt, Frank W. (1985), "Restricted permutations", European Journal of Combinatorics , 6 (4): 383–406, doi: 10.1016/s0195-6698(85)80052-4 , MR   0829358 .
  10. Claesson, Anders; Kitaev, Sergey (2008), "Classification of bijections between 321- and 132-avoiding permutations", Séminaire Lotharingien de Combinatoire , 60: B60d, 30pp, arXiv: 0805.1325 , MR   2465405 .
  11. Stankova, Zvezdelina (1994), "Forbidden subsequences", Discrete Mathematics , 132 (1–3): 291–316, doi: 10.1016/0012-365X(94)90242-9 , MR   1297387 .
  12. Stankova, Zvezdelina; West, Julian (2002), "A New class of Wilf-Equivalent Permutations", Journal of Algebraic Combinatorics , 15 (3): 271–290, arXiv: math/0103152 , doi:10.1023/A:1015016625432, MR   1900628, S2CID   13921676 .
  13. Backelin, Jörgen; West, Julian; Xin, Guoce (2007), "Wilf-equivalence for singleton classes", Advances in Applied Mathematics , 38 (2): 133–149, doi: 10.1016/j.aam.2004.11.006 , MR   2290807 .
  14. Bóna, Miklós (1997), "Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps", Journal of Combinatorial Theory , Series A, 80 (2): 257–272, arXiv: math/9702223 , doi:10.1006/jcta.1997.2800, MR   1485138, S2CID   18352890 .
  15. Gessel, Ira M. (1990), "Symmetric functions and P-recursiveness", Journal of Combinatorial Theory , Series A, 53 (2): 257–285, doi: 10.1016/0097-3165(90)90060-A , MR   1041448 .
  16. Marcus, Adam; Tardos, Gábor (2004), "Excluded permutation matrices and the Stanley-Wilf conjecture", Journal of Combinatorial Theory , Series A, 107 (1): 153–160, doi: 10.1016/j.jcta.2004.04.002 , MR   2063960 .
  17. Wilf, Herbert (2002), "Patterns of permutations", Discrete Mathematics , 257 (2): 575–583, doi: 10.1016/S0012-365X(02)00515-0 , MR   1935750 .
  18. Sagan, Bruce; Vatter, Vince (2006), "The Möbius function of a composition poset", Journal of Algebraic Combinatorics , 24 (2): 117–136, arXiv: math/0507485 , doi:10.1007/s10801-006-0017-4, MR   2259013, S2CID   11283347 .
  19. Burstein, Alexander; Jelinek, Vit; Jelinkova, Eva; Steingrimsson, Einar (2011), "The Möbius function of separable and decomposable permutations", Journal of Combinatorial Theory , Series A, 118 (1): 2346–2364, doi: 10.1016/j.jcta.2011.06.002 , MR   2834180, S2CID   13978488 .
  20. Brignall, Robert; Jelínek, Vit; Kynčl, Jan; Marchant, David (2019), "Zeros of the Möbius function of permutations" (PDF), Mathematika , 65 (4): 1074–1092, arXiv: 1810.05449 , doi:10.1112/S0025579319000251, MR   3992365, S2CID   53366318
  21. Marchant, David (2020), "2413-balloon permutations and the growth of the Möbius function", Electronic Journal of Combinatorics , 27 (1): Article P1.7, 18 pp, arXiv: 1812.05064 , doi: 10.37236/8554
  22. 1 2 Bose, Prosenjit; Buss, Jonathan F.; Lubiw, Anna (March 1998), "Pattern matching for permutations", Information Processing Letters , 65 (5): 277–283, doi:10.1016/S0020-0190(97)00209-3
  23. Guillemot, Sylvain; Marx, Daniel (2014). "Finding small patterns in permutations in linear time". Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms: 20. arXiv: 1307.3073 . doi:10.1137/1.9781611973402.7. ISBN   978-1-61197-338-9. S2CID   1846959.
  24. Bruner, Marie-Louise; Lackner, Martin (2013), "The computational landscape of permutation patterns", Pure Mathematics and Applications, 24 (2): 83–101, arXiv: 1301.0340
  25. Kubica, M.; Kulczyński, T.; Radoszewski, J.; Rytter, W.; Waleń, T. (2013), "A linear time algorithm for consecutive permutation pattern matching", Information Processing Letters , 113 (12): 430–433, doi:10.1016/j.ipl.2013.03.015
  26. 1 2 Jelínek, Vít; Kynčl, Jan (2017). "Hardness of Permutation Pattern Matching". Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19. SIAM. pp. 378–396. arXiv: 1608.00529 . doi:10.1137/1.9781611974782.24.
  27. Guillemot, Sylvain; Vialette, Stéphane (2009), "Pattern matching for 321-avoiding permutations", Algorithms and Computation, Lecture Notes in Computer Science, vol. 5878, pp. 1064–1073, arXiv: 1511.01770 , doi:10.1007/978-3-642-10631-6_107, ISBN   978-3-642-10630-9
  28. Albert, Michael; Lackner, Marie-Louise; Lackner, Martin; Vatter, Vincent (2016), "The complexity of pattern matching for 321-avoiding and skew-merged permutations", Discrete Mathematics & Theoretical Computer Science, 18 (2), arXiv: 1510.06051 , doi:10.46298/dmtcs.1308, S2CID   5827603
  29. Jelínek, Vít; Opler, Michal; Pekárek, Jakub (2021). "Griddings of Permutations and Hardness of Pattern Matching". 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021, August 23-27, 2021, Tallinn, Estonia. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. pp. 65:1–65:22. arXiv: 2107.10897 . doi: 10.4230/LIPIcs.MFCS.2021.65 .
  30. 1 2 3 Price, Alkes (1997), Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, ProQuest   304421853 .
  31. Albert, Michael H.; Atkinson, M. D.; Handley, C. C.; Holton, D. A.; Stromquist, W. (2002), "On packing densities of permutations", Electronic Journal of Combinatorics , 9: Article R5, 20 pp, doi: 10.37236/1622 , MR   1887086 .
  32. Presutti, Cathleen Battiste; Stromquist, Walter (2010), "Packing rates of measures and a conjecture for the packing density of 2413", in Linton, Steve; Ruškuc, Nik; Vatter, Vincent (eds.), Permutation Patterns, London Math. Soc. Lecture Notes, vol. 376, Cambridge University Press, pp. 287–316, doi:10.1017/CBO9780511902499.015, ISBN   978-0-521-72834-8 .
  33. Arratia, Richard (1999), "On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern", Electronic Journal of Combinatorics , 6: Article N1, 4 pp, doi: 10.37236/1477 , MR   1710623 .
  34. Engen, Michael; Vatter, Vincent (2021), "Containing all permutations", American Mathematical Monthly , 128 (1): 4–24, arXiv: 1810.08252 , doi: 10.1080/00029890.2021.1835384
  35. Eriksson, Henrik; Eriksson, Kimmo; Linusson, Svante; Wästlund, Johan (2007), "Dense packing of patterns in a permutation", Annals of Combinatorics , 11 (3–4): 459–470, doi:10.1007/s00026-007-0329-7, MR   2376116, S2CID   2021533 .
  36. Babson, Erik; Steingrímsson, Einar (2000), "Generalized permutation patterns and a classification of the Mahonian statistics", Séminaire Lotharingien de Combinatoire , 44: Research article B44b, 18 pp, MR   1758852 .
  37. West, Julian (1993), "Sorting twice through a stack", Theoretical Computer Science , 117 (1–2): 303–313, doi: 10.1016/0304-3975(93)90321-J , MR   1235186 .
  38. Bousquet-Mélou, Mireille; Butler, Steve (2007), "Forest-like permutations", Annals of Combinatorics , 11 (3–4): 335–354, arXiv: math/0603617 , doi:10.1007/s00026-007-0322-1, MR   2376109, S2CID   31236417 .

A conference on permutation patterns has been held annually since 2003:

  1. Permutation Patterns 2003, February 10–14, 2003, University of Otago, Dunedin, New Zealand.
  2. Permutation Patterns 2004, July 5–9, 2004, Malaspina University-College, Nanaimo, British Columbia, Canada.
  3. Permutation Patterns 2005, March 7–11, 2005, University of Florida, Gainesville, Florida, USA.
  4. Permutation Patterns 2006, June 12–16, 2006, Reykjavík University, Reykjavík, Iceland.
  5. Permutation Patterns 2007, June 11–15, 2007, University of St. Andrews, St. Andrews, Scotland.
  6. Permutation Patterns 2008, June 16–20, 2008, University of Otago, Dunedin, New Zealand.
  7. Permutation Patterns 2009, July 13–17, 2009, Università di Firenze, Florence, Italy.
  8. Permutation Patterns 2010, August 9–13, 2010, Dartmouth College, Hanover, New Hampshire, USA.
  9. Permutation Patterns 2011, June 20–24, 2011, California Polytechnic State University, San Luis Obispo, California, USA.
  10. Permutation Patterns 2012, June 11–15, 2012, University of Strathclyde, Glasgow, Scotland.
  11. Permutation Patterns 2013, July 1–5, 2013, Université Paris Diderot, Paris, France.
  12. Permutation Patterns 2014, July 7–11, 2014, East Tennessee State University, Johnson City, Tennessee, USA.
  13. Permutation Patterns 2015, June 15–19, 2015, De Morgan House, London, England.
  14. Permutation Patterns 2016, June 27–July 1, 2016, Howard University, Washington, DC, USA.
  15. Permutation Patterns 2017, June 26–30, 2017, Reykjavík University, Reykjavík, Iceland.
  16. Permutation Patterns 2018, July 9–13, 2018, Dartmouth College, Hanover, New Hampshire, USA.
  17. Permutation Patterns 2019, June 17–21, 2019, Universität Zürich, Zürich, Switzerland.
  18. Permutation Patterns 2020 Virtual Workshop, June 30–July 1, 2020, hosted by Valparaiso University, Valparaiso, Indiana, USA.
  19. Permutation Patterns 2021 Virtual Workshop, June 15–16, 2021, hosted by University of Strathclyde, Glasgow, Scotland.
  20. Permutation Patterns 2022, June 20-24, 2022, Valparaiso University, Valparaiso, Indiana, USA.
  21. Permutation Patterns 2023, July 3-7, 2023, University of Burgundy, Dijon, France.

American Mathematical Society Special Sessions on Patterns in Permutations have been held at the following meetings:

Other permutation patterns meetings:

Other links: