Journal of Combinatorial Theory

Last updated

Influential articles

Influential articles that appeared in the journal include Katona's elegant proof [8] of the Erdős–Ko–Rado theorem and a series of papers spanning over 500 pages, appearing from 1983 [9] to 2004, [10] by Neil Robertson and Paul D. Seymour on the topic of graph minors, which together constitute the proof of the graph minors theorem. Two articles proving Kneser's conjecture, [11] [12] the first by László Lovász and the other by Imre Bárány, appeared back-to-back in the same issue of the journal.

References

  1. Journal of Combinatorial Theory, Series A - Elsevier
  2. Journal of Combinatorial Theory, Series B - Elsevier
  3. They are acknowledged on the journals' title pages and Web sites. See Editorial board of JCTA; Editorial board of JCTB.
  4. "Another mass resignation of an editorial board has happened". Twitter. Retrieved 2020-09-14.
  5. "Combinatorial Theory: a new mathematician-owned and fully open access journal".
  6. "Website of the new journal".
  7. Editorial Team, Combinatorial Theory (2021-12-09). "Editorial". Combinatorial Theory. 1. doi: 10.5070/C61055307 . ISSN   2766-1334. S2CID   245076810.
  8. Katona, G.O.H. (1972). "A simple proof of the Erdös-Chao Ko-Rado theorem". Journal of Combinatorial Theory, Series B. 13 (2): 183–184. doi: 10.1016/0095-8956(72)90054-8 .
  9. Robertson, Neil; P.D. Seymour (1983). "Graph Minors. I. Excluding a forest". Journal of Combinatorial Theory, Series B. 35 (1): 39–61. doi: 10.1016/0095-8956(83)90079-5 .
  10. Robertson, Neil; P.D. Seymour (2004). "Graph Minors. XX. Wagner's conjecture". Journal of Combinatorial Theory, Series B. 92 (2): 325–357. doi: 10.1016/j.jctb.2004.08.001 .
  11. Lovász, László (1978). "Kneser's conjecture, chromatic number, and homotopy". Journal of Combinatorial Theory, Series A. 25 (3): 319–324. doi:10.1016/0097-3165(78)90022-5.
  12. Bárány, Imre (1978). "A short proof of Kneser's conjecture". Journal of Combinatorial Theory, Series A. 25 (3): 325–326. doi:10.1016/0097-3165(78)90023-7.