Kneser graph

Last updated
Kneser graph
Kneser graph KG(5,2).svg
The Kneser graph K(5, 2),
isomorphic to the Petersen graph
Named after Martin Kneser
Vertices
Edges
Chromatic number
Properties -regular
arc-transitive
NotationK(n, k), KGn,k.
Table of graphs and parameters

In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.

Contents

Examples

Kneser graph O4 = K(7, 3) Kneser graph KG(7,3).jpg
Kneser graph O4 = K(7, 3)

The Kneser graph K(n, 1) is the complete graph on n vertices.

The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices.

The Kneser graph K(2n − 1, n − 1) is the odd graph On; in particular O3 = K(5, 2) is the Petersen graph (see top right figure).

The Kneser graph O4 = K(7, 3), visualized on the right.

Properties

Basic properties

The Kneser graph has vertices. Each vertex has exactly neighbors.

The Kneser graph is vertex transitive and arc transitive. When , the Kneser graph is a strongly regular graph, with parameters . However, it is not strongly regular when , as different pairs of nonadjacent vertices have different numbers of common neighbors depending on the size of the intersection of the corresponding pairs of sets.

Because Kneser graphs are regular and edge-transitive, their vertex connectivity equals their degree, except for which is disconnected. More precisely, the connectivity of is the same as the number of neighbors per vertex. [1]

Chromatic number

As Kneser ( 1956 ) conjectured, the chromatic number of the Kneser graph for is exactly n − 2k + 2; for instance, the Petersen graph requires three colors in any proper coloring. This conjecture was proved in several ways.

In contrast, the fractional chromatic number of these graphs is . [6] When , has no edges and its chromatic number is 1.

Hamiltonian cycles

It is well-known that the Petersen graph is not Hamiltonian, but it was long conjectured that this was the sole exception and that every other connected Kneser graph K(n, k) is Hamiltonian.

In 2003, Chen showed that the Kneser graph K(n, k) contains a Hamiltonian cycle if [7]

Since
holds for all this condition is satisfied if

Around the same time, Shields showed (computationally) that, except the Petersen graph, all connected Kneser graphs K(n, k) with n ≤ 27 are Hamiltonian. [8]

In 2021, Mütze, Nummenpalo, and Walczak proved that the Kneser graph K(n, k) contains a Hamiltonian cycle if there exists a non-negative integer such that . [9] In particular, the odd graph On has a Hamiltonian cycle if n ≥ 4. Finally, in 2023, Merino, Mütze and Namrata completed the proof of the conjecture. [10]

Cliques

When n < 3k, the Kneser graph K(n, k) contains no triangles. More generally, when n < ck it does not contain cliques of size c, whereas it does contain such cliques when nck. Moreover, although the Kneser graph always contains cycles of length four whenever n ≥ 2k + 2, for values of n close to 2k the shortest odd cycle may have variable length. [11]

Diameter

The diameter of a connected Kneser graph K(n, k) is [12]

Spectrum

The spectrum of the Kneser graph K(n, k) consists of k + 1 distinct eigenvalues:

Moreover occurs with multiplicity for and has multiplicity 1. [13]

Independence number

The Erdős–Ko–Rado theorem states that the independence number of the Kneser graph K(n, k) for is

The Johnson graph J(n, k) is the graph whose vertices are the k-element subsets of an n-element set, two vertices being adjacent when they meet in a (k  1)-element set. The Johnson graph J(n, 2) is the complement of the Kneser graph K(n, 2). Johnson graphs are closely related to the Johnson scheme, both of which are named after Selmer M. Johnson.

The generalized Kneser graphK(n, k, s) has the same vertex set as the Kneser graph K(n, k), but connects two vertices whenever they correspond to sets that intersect in s or fewer items. [11] Thus K(n, k, 0) = K(n, k).

The bipartite Kneser graphH(n, k) has as vertices the sets of k and nk items drawn from a collection of n elements. Two vertices are connected by an edge whenever one set is a subset of the other. Like the Kneser graph it is vertex transitive with degree The bipartite Kneser graph can be formed as a bipartite double cover of K(n, k) in which one makes two copies of each vertex and replaces each edge by a pair of edges connecting corresponding pairs of vertices. [14] The bipartite Kneser graph H(5, 2) is the Desargues graph and the bipartite Kneser graph H(n, 1) is a crown graph.

Related Research Articles

In graph theory, a regular graph is a graph where each vertex has the same number of neighbors; i.e. every vertex has the same degree or valency. A regular directed graph must also satisfy the stronger condition that the indegree and outdegree of each internal vertex are equal to each other. A regular graph with vertices of degree k is called a k‑regular graph or regular graph of degree k. Also, from the handshaking lemma, a regular graph contains an even number of vertices with odd degree.

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

<span class="mw-page-title-main">Hamiltonian path</span> Path in a graph that visits each vertex exactly once

In the mathematical field of graph theory, a Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details.

<span class="mw-page-title-main">Erdős–Ko–Rado theorem</span> Upper bound on intersecting set families

In mathematics, the Erdős–Ko–Rado theorem limits the number of sets in a family of sets for which every two sets have at least one element in common. Paul Erdős, Chao Ko, and Richard Rado proved the theorem in 1938, but did not publish it until 1961. It is part of the field of combinatorics, and one of the central results of extremal set theory.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

In graph theory, the strong perfect graph theorem is a forbidden graph characterization of the perfect graphs as being exactly the graphs that have neither odd holes nor odd antiholes. It was conjectured by Claude Berge in 1961. A proof by Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas was announced in 2002 and published by them in 2006.

<span class="mw-page-title-main">Tournament (graph theory)</span> Directed graph where each vertex pair has one arc

A tournament is a directed graph (digraph) obtained by assigning a direction for each edge in an undirected complete graph. That is, it is an orientation of a complete graph, or equivalently a directed graph in which every pair of distinct vertices is connected by a directed edge with any one of the two possible orientations.

<span class="mw-page-title-main">Desargues graph</span> Distance-transitive cubic graph with 20 nodes and 30 edges

In the mathematical field of graph theory, the Desargues graph is a distance-transitive, cubic graph with 20 vertices and 30 edges. It is named after Girard Desargues, arises from several different combinatorial constructions, has a high level of symmetry, is the only known non-planar cubic partial cube, and has been applied in chemical databases.

<span class="mw-page-title-main">Hadwiger conjecture (graph theory)</span> Unproven generalization of the four-color theorem

In graph theory, the Hadwiger conjecture states that if is loopless and has no minor then its chromatic number satisfies . It is known to be true for . The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field.

In graph theory, the Lovász conjecture (1969) is a classical problem on Hamiltonian paths in graphs. It says:

In extremal graph theory, the forbidden subgraph problem is the following problem: given a graph , find the maximal number of edges an -vertex graph can have such that it does not have a subgraph isomorphic to . In this context, is called a forbidden subgraph.

<span class="mw-page-title-main">Odd graph</span> Family of symmetric graphs which generalize the Petersen graph

In the mathematical field of graph theory, the odd graphs are a family of symmetric graphs defined from certain set systems. They include and generalize the Petersen graph.

In graph theory, an area of mathematics, an equitable coloring is an assignment of colors to the vertices of an undirected graph, in such a way that

<span class="mw-page-title-main">Generalized Petersen graph</span> Family of cubic graphs formed from regular and star polygons

In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. The generalized Petersen graph family was introduced in 1950 by H. S. M. Coxeter and was given its name in 1969 by Mark Watkins.

<span class="mw-page-title-main">Folkman graph</span> Bipartite 4-regular graph with 20 nodes and 40 edges

In the mathematical field of graph theory, the Folkman graph is a 4-regular graph with 20 vertices and 40 edges. It is a regular bipartite graph with symmetries taking every edge to every other edge, but the two sides of its bipartition are not symmetric with each other, making it the smallest possible semi-symmetric graph. It is named after Jon Folkman, who constructed it for this property in 1967.

<span class="mw-page-title-main">Hamiltonian decomposition</span>

In graph theory, a branch of mathematics, a Hamiltonian decomposition of a given graph is a partition of the edges of the graph into Hamiltonian cycles. Hamiltonian decompositions have been studied both for undirected graphs and for directed graphs. In the undirected case a Hamiltonian decomposition can also be described as a 2-factorization of the graph such that each factor is connected.

<span class="mw-page-title-main">Sumner's conjecture</span>

Sumner's conjecture states that every orientation of every -vertex tree is a subgraph of every -vertex tournament. David Sumner, a graph theorist at the University of South Carolina, conjectured in 1971 that tournaments are universal graphs for polytrees. The conjecture was proven for all large by Daniela Kühn, Richard Mycroft, and Deryk Osthus.

<span class="mw-page-title-main">Fleischner's theorem</span> Theorem on Hamiltonian graphs

In graph theory, a branch of mathematics, Fleischner's theorem gives a sufficient condition for a graph to contain a Hamiltonian cycle. It states that, if is a 2-vertex-connected graph, then the square of is Hamiltonian. It is named after Herbert Fleischner, who published its proof in 1974.

Sidorenko's conjecture is a conjecture in the field of graph theory, posed by Alexander Sidorenko in 1986. Roughly speaking, the conjecture states that for any bipartite graph and graph on vertices with average degree , there are at least labeled copies of in , up to a small error term. Formally, it provides an intuitive inequality about graph homomorphism densities in graphons. The conjectured inequality can be interpreted as a statement that the density of copies of in a graph is asymptotically minimized by a random graph, as one would expect a fraction of possible subgraphs to be a copy of if each edge exists with probability .

The blow-up lemma, proved by János Komlós, Gábor N. Sárközy, and Endre Szemerédi in 1997, is an important result in extremal graph theory, particularly within the context of the regularity method. It states that the regular pairs in the statement of Szemerédi's regularity lemma behave like complete bipartite graphs in the context of embedding spanning graphs of bounded degree.

References

Notes

  1. Watkins (1970).
  2. Lovász (1978).
  3. Bárány (1978).
  4. Greene (2002).
  5. Matoušek (2004).
  6. Godsil & Meagher (2015).
  7. Chen (2003).
  8. Shields (2004).
  9. Mütze, Nummenpalo & Walczak (2021).
  10. Merino, Mütze & Namrata (2023).
  11. 1 2 Denley (1997).
  12. Valencia-Pabon & Vera (2005).
  13. "Archived copy" (PDF). www.math.caltech.edu. Archived from the original (PDF) on 23 March 2012. Retrieved 9 August 2022.{{cite web}}: CS1 maint: archived copy as title (link)
  14. Simpson (1991).

Works cited