Topological combinatorics

Last updated

The mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics.

Contents

History

The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology.

In 1978 the situation was reversed—methods from algebraic topology were used to solve a problem in combinatorics—when László Lovász proved the Kneser conjecture, thus beginning the new field of topological combinatorics. Lovász's proof used the Borsuk–Ulam theorem and this theorem retains a prominent role in this new field. This theorem has many equivalent versions and analogs and has been used in the study of fair division problems.

In another application of homological methods to graph theory, Lovász proved both the undirected and directed versions of a conjecture of András Frank: Given a k-connected graph G, k points , and k positive integers that sum up to , there exists a partition of such that , , and spans a connected subgraph.

In 1987 the necklace splitting problem was solved by Noga Alon using the Borsuk–Ulam theorem. It has also been used to study complexity problems in linear decision tree algorithms and the Aanderaa–Karp–Rosenberg conjecture. Other areas include topology of partially ordered sets and Bruhat orders.

Additionally, methods from differential topology now have a combinatorial analog in discrete Morse theory.

See also

Related Research Articles

In mathematics, the Borsuk–Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics, from evolutionary biology to computer science, etc.

Discrete mathematics Study of discrete mathematical structures

Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous. In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic – do not vary smoothly in this way, but have distinct, separated values. Discrete mathematics therefore excludes topics in "continuous mathematics" such as calculus or Euclidean geometry. Discrete objects can often be enumerated by integers. More formally, discrete mathematics has been characterized as the branch of mathematics dealing with countable sets. However, there is no exact definition of the term "discrete mathematics." Indeed, discrete mathematics is described less by what is included than by what is excluded: continuously varying quantities and related notions.

Algebraic topology Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

Petersen graph Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures.

In graph theory, an undirected graph H is called a minor of the graph G if H can be formed from G by deleting edges and vertices and by contracting edges.

Discrete geometry Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

In mathematics, Sperner's lemma is a combinatorial analog of the Brouwer fixed point theorem, which is equivalent to it.

Perfect graph

In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph. Equivalently stated in symbolic terms an arbitrary graph is perfect if and only if for all we have .

Kneser graph

In graph theory, the Kneser graphK(n, k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1955.

The Journal of Combinatorial Theory, Series A and Series B, are mathematical journals specializing in combinatorics and related areas. They are published by Elsevier. Series A is concerned primarily with structures, designs, and applications of combinatorics. Series B is concerned primarily with graph and matroid theory. The two series are two of the leading journals in the field and are widely known as JCTA and JCTB.

Tuckers lemma

In mathematics, Tucker's lemma is a combinatorial analog of the Borsuk–Ulam theorem, named after Albert W. Tucker.

Necklace splitting problem

Necklace splitting is a picturesque name given to several related problems in combinatorics and measure theory. Its name and solutions are due to mathematicians Noga Alon and Douglas B. West.

Jiří Matoušek (mathematician)

Jiří (Jirka) Matoušek was a Czech mathematician working in computational geometry and algebraic topology. He was a professor at Charles University in Prague and the author of several textbooks and research monographs.

In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form

In mathematics, equivariant topology is the study of topological spaces that possess certain symmetries. In studying topological spaces, one often considers continuous maps , and while equivariant topology also considers such maps, there is the additional constraint that each map "respects symmetry" in both its domain and target space.

Dmitry Feichtner-Kozlov

Dmitry Feichtner-Kozlov is a Russian-German mathematician.

Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry is a graduate-level mathematics textbook in topological combinatorics. It describes the use of results in topology, and in particular the Borsuk–Ulam theorem, to prove theorems in combinatorics and discrete geometry. It was written by Czech mathematician Jiří Matoušek, and published in 2003 by Springer-Verlag in their Universitext series (ISBN 978-3-540-00362-5).

References

Further reading