Topological combinatorics

Last updated

The mathematical discipline of topological combinatorics is the application of topological and algebro-topological methods to solving problems in combinatorics.

Contents

History

The discipline of combinatorial topology used combinatorial concepts in topology and in the early 20th century this turned into the field of algebraic topology.

In 1978 the situation was reversed—methods from algebraic topology were used to solve a problem in combinatorics—when László Lovász proved the Kneser conjecture, thus beginning the new field of topological combinatorics. Lovász's proof used the Borsuk–Ulam theorem and this theorem retains a prominent role in this new field. This theorem has many equivalent versions and analogs and has been used in the study of fair division problems.

In another application of homological methods to graph theory, Lovász proved both the undirected and directed versions of a conjecture of András Frank: Given a k-connected graph G, k points , and k positive integers that sum up to , there exists a partition of such that , , and spans a connected subgraph.

In 1987 the necklace splitting problem was solved by Noga Alon using the Borsuk–Ulam theorem. It has also been used to study complexity problems in linear decision tree algorithms and the Aanderaa–Karp–Rosenberg conjecture. Other areas include topology of partially ordered sets and Bruhat orders.

Additionally, methods from differential topology now have a combinatorial analog in discrete Morse theory.

See also

Related Research Articles

<span class="mw-page-title-main">Borsuk–Ulam theorem</span> Theorem in topology

In mathematics, the Borsuk–Ulam theorem states that every continuous function from an n-sphere into Euclidean n-space maps some pair of antipodal points to the same point. Here, two points on a sphere are called antipodal if they are in exactly opposite directions from the sphere's center.

Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science.

<span class="mw-page-title-main">Algebraic topology</span> Branch of mathematics

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

<span class="mw-page-title-main">Simplicial complex</span> Mathematical set

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex. To distinguish a simplicial complex from an abstract simplicial complex, the former is often called a geometric simplicial complex.

Combinatorics is a branch of mathematics concerning the study of finite or countable discrete structures.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

<span class="mw-page-title-main">Abstract simplicial complex</span> Mathematical object

In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely combinatorial description of the geometric notion of a simplicial complex. For example, in a 2-dimensional simplicial complex, the sets in the family are the triangles, their edges, and their vertices.

<span class="mw-page-title-main">Radon's theorem</span> Says d+2 points in d dimensions can be partitioned into two subsets whose convex hulls intersect

In geometry, Radon's theorem on convex sets, published by Johann Radon in 1921, states that:

Any set of d + 2 points in Rd can be partitioned into two sets whose convex hulls intersect.

<span class="mw-page-title-main">Kneser graph</span> Graph whose vertices correspond to combinations of a set of n elements

In graph theory, the Kneser graphK(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956.

<span class="mw-page-title-main">Tucker's lemma</span> Combinatorial analog of the Borsuk-Ulam theorem

In mathematics, Tucker's lemma is a combinatorial analog of the Borsuk–Ulam theorem, named after Albert W. Tucker.

<span class="mw-page-title-main">Necklace splitting problem</span>

Necklace splitting is a picturesque name given to several related problems in combinatorics and measure theory. Its name and solutions are due to mathematicians Noga Alon and Douglas B. West.

<span class="mw-page-title-main">Jiří Matoušek (mathematician)</span> Czech mathematician (1963–2015)

Jiří (Jirka) Matoušek was a Czech mathematician working in computational geometry and algebraic topology. He was a professor at Charles University in Prague and the author of several textbooks and research monographs.

In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form

In mathematics, equivariant topology is the study of topological spaces that possess certain symmetries. In studying topological spaces, one often considers continuous maps , and while equivariant topology also considers such maps, there is the additional constraint that each map "respects symmetry" in both its domain and target space.

<span class="mw-page-title-main">Dmitry Feichtner-Kozlov</span> Russian-German mathematician

Dmitry Feichtner-Kozlov is a Russian-German mathematician.

Using the Borsuk–Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry is a graduate-level mathematics textbook in topological combinatorics. It describes the use of results in topology, and in particular the Borsuk–Ulam theorem, to prove theorems in combinatorics and discrete geometry. It was written by Czech mathematician Jiří Matoušek, and published in 2003 by Springer-Verlag in their Universitext series (ISBN 978-3-540-00362-5).

A chessboard complex is a particular kind of abstract simplicial complex, which has various applications in topological graph theory and algebraic topology. Informally, the (m, n)-chessboard complex contains all sets of positions on an m-by-n chessboard, where rooks can be placed without attacking each other. Equivalently, it is the matching complex of the (m, n)-complete bipartite graph, or the independence complex of the m-by-n rook's graph.

References

Further reading