Discrete Morse theory

Last updated

Discrete Morse theory is a combinatorial adaptation of Morse theory developed by Robin Forman. The theory has various practical applications in diverse fields of applied mathematics and computer science, such as configuration spaces, [1] homology computation, [2] [3] denoising, [4] mesh compression, [5] and topological data analysis. [6]

Contents

Notation regarding CW complexes

Let be a CW complex and denote by its set of cells. Define the incidence function in the following way: given two cells and in , let be the degree of the attaching map from the boundary of to . The boundary operator is the endomorphism of the free abelian group generated by defined by

It is a defining property of boundary operators that . In more axiomatic definitions [7] one can find the requirement that

which is a consequence of the above definition of the boundary operator and the requirement that .

Discrete Morse functions

A real-valued function is a discrete Morse function if it satisfies the following two properties:

  1. For any cell , the number of cells in the boundary of which satisfy is at most one.
  2. For any cell , the number of cells containing in their boundary which satisfy is at most one.

It can be shown [8] that the cardinalities in the two conditions cannot both be one simultaneously for a fixed cell , provided that is a regular CW complex. In this case, each cell can be paired with at most one exceptional cell : either a boundary cell with larger value, or a co-boundary cell with smaller value. The cells which have no pairs, i.e., whose function values are strictly higher than their boundary cells and strictly lower than their co-boundary cells are called critical cells. Thus, a discrete Morse function partitions the CW complex into three distinct cell collections: , where:

  1. denotes the critical cells which are unpaired,
  2. denotes cells which are paired with boundary cells, and
  3. denotes cells which are paired with co-boundary cells.

By construction, there is a bijection of sets between -dimensional cells in and the -dimensional cells in , which can be denoted by for each natural number . It is an additional technical requirement that for each , the degree of the attaching map from the boundary of to its paired cell is a unit in the underlying ring of . For instance, over the integers , the only allowed values are . This technical requirement is guaranteed, for instance, when one assumes that is a regular CW complex over .

The fundamental result of discrete Morse theory establishes that the CW complex is isomorphic on the level of homology to a new complex consisting of only the critical cells. The paired cells in and describe gradient paths between adjacent critical cells which can be used to obtain the boundary operator on . Some details of this construction are provided in the next section.

The Morse complex

A gradient path is a sequence of paired cells

satisfying and . The index of this gradient path is defined to be the integer

The division here makes sense because the incidence between paired cells must be . Note that by construction, the values of the discrete Morse function must decrease across . The path is said to connect two critical cells if . This relationship may be expressed as . The multiplicity of this connection is defined to be the integer . Finally, the Morse boundary operator on the critical cells is defined by

where the sum is taken over all gradient path connections from to .

Basic Results

Many of the familiar results from continuous Morse theory apply in the discrete setting.

The Morse Inequalities

Let be a Morse complex associated to the CW complex . The number of -cells in is called the -th Morse number. Let denote the -th Betti number of . Then, for any , the following inequalities [9] hold

, and

Moreover, the Euler characteristic of satisfies

Discrete Morse Homology and Homotopy Type

Let be a regular CW complex with boundary operator and a discrete Morse function . Let be the associated Morse complex with Morse boundary operator . Then, there is an isomorphism [10] of homology groups

and similarly for the homotopy groups.

Applications

Discrete Morse theory finds its application in molecular shape analysis, [11] skeletonization of digital images/volumes, [12] graph reconstruction from noisy data, [13] denoising noisy point clouds [14] and analysing lithic tools in archaeology. [15]

See also

Related Research Articles

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

<span class="mw-page-title-main">Cross-correlation</span> Covariance and correlation

In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a sliding dot product or sliding inner-product. It is commonly used for searching a long signal for a shorter, known feature. It has applications in pattern recognition, single particle analysis, electron tomography, averaging, cryptanalysis, and neurophysiology. The cross-correlation is similar in nature to the convolution of two functions. In an autocorrelation, which is the cross-correlation of a signal with itself, there will always be a peak at a lag of zero, and its size will be the signal energy.

The Einstein–Hilbert action in general relativity is the action that yields the Einstein field equations through the stationary-action principle. With the (− + + +) metric signature, the gravitational part of the action is given as

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

In theoretical physics, the Rarita–Schwinger equation is the relativistic field equation of spin-3/2 fermions in a four-dimensional flat spacetime. It is similar to the Dirac equation for spin-1/2 fermions. This equation was first introduced by William Rarita and Julian Schwinger in 1941.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Oblate spheroidal coordinates</span> Three-dimensional orthogonal coordinate system

Oblate spheroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional elliptic coordinate system about the non-focal axis of the ellipse, i.e., the symmetry axis that separates the foci. Thus, the two foci are transformed into a ring of radius in the x-y plane. Oblate spheroidal coordinates can also be considered as a limiting case of ellipsoidal coordinates in which the two largest semi-axes are equal in length.

In conformal geometry, the tractor bundle is a particular vector bundle constructed on a conformal manifold whose fibres form an effective representation of the conformal group.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In the Newman–Penrose (NP) formalism of general relativity, Weyl scalars refer to a set of five complex scalars which encode the ten independent components of the Weyl tensor of a four-dimensional spacetime.

In mathematics, a conservative system is a dynamical system which stands in contrast to a dissipative system. Roughly speaking, such systems have no friction or other mechanism to dissipate the dynamics, and thus, their phase space does not shrink over time. Precisely speaking, they are those dynamical systems that have a null wandering set: under time evolution, no portion of the phase space ever "wanders away", never to be returned to or revisited. Alternately, conservative systems are those to which the Poincaré recurrence theorem applies. An important special case of conservative systems are the measure-preserving dynamical systems.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In physics and mathematics, the κ-Poincaré group, named after Henri Poincaré, is a quantum group, obtained by deformation of the Poincaré group into a Hopf algebra. It is generated by the elements and with the usual constraint:

In mathematical physics, the Belinfante–Rosenfeld tensor is a modification of the energy–momentum tensor that is constructed from the canonical energy–momentum tensor and the spin current so as to be symmetric yet still conserved.

A non-expanding horizon (NEH) is an enclosed null surface whose intrinsic structure is preserved. An NEH is the geometric prototype of an isolated horizon which describes a black hole in equilibrium with its exterior from the quasilocal perspective. It is based on the concept and geometry of NEHs that the two quasilocal definitions of black holes, weakly isolated horizons and isolated horizons, are developed.

In the Newman–Penrose (NP) formalism of general relativity, independent components of the Ricci tensors of a four-dimensional spacetime are encoded into seven Ricci scalars which consist of three real scalars , three complex scalars and the NP curvature scalar . Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

An affine term structure model is a financial model that relates zero-coupon bond prices to a spot rate model. It is particularly useful for deriving the yield curve – the process of determining spot rate model inputs from observable bond market data. The affine class of term structure models implies the convenient form that log bond prices are linear functions of the spot rate.

Generalized relative entropy is a measure of dissimilarity between two quantum states. It is a "one-shot" analogue of quantum relative entropy and shares many properties of the latter quantity.

The variational multiscale method (VMS) is a technique used for deriving models and numerical methods for multiscale phenomena. The VMS framework has been mainly applied to design stabilized finite element methods in which stability of the standard Galerkin method is not ensured both in terms of singular perturbation and of compatibility conditions with the finite element spaces.

References

  1. Mori, Francesca; Salvetti, Mario (2011), "(Discrete) Morse theory for Configuration spaces" (PDF), Mathematical Research Letters, 18 (1): 39–57, doi: 10.4310/MRL.2011.v18.n1.a4 , MR   2770581
  2. Perseus: the Persistent Homology software.
  3. Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry . 50 (2): 330–353. doi: 10.1007/s00454-013-9529-6 .
  4. Bauer, Ulrich; Lange, Carsten; Wardetzky, Max (2012). "Optimal Topological Simplification of Discrete Functions on Surfaces". Discrete & Computational Geometry . 47 (2): 347–377. arXiv: 1001.1269 . doi: 10.1007/s00454-011-9350-z .
  5. Lewiner, T.; Lopes, H.; Tavares, G. (2004). "Applications of Forman's discrete Morse theory to topology visualization and mesh compression" (PDF). IEEE Transactions on Visualization and Computer Graphics. 10 (5): 499–508. doi:10.1109/TVCG.2004.18. PMID   15794132. S2CID   2185198. Archived from the original (PDF) on 2012-04-26.
  6. "the Topology ToolKit". GitHub.io.
  7. Mischaikow, Konstantin; Nanda, Vidit (2013). "Morse Theory for Filtrations and Efficient computation of Persistent Homology". Discrete & Computational Geometry . 50 (2): 330–353. doi: 10.1007/s00454-013-9529-6 .
  8. Forman 1998 , Lemma 2.5
  9. Forman 1998 , Corollaries 3.5 and 3.6
  10. Forman 1998 , Theorem 7.3
  11. Cazals, F.; Chazal, F.; Lewiner, T. (2003). "Molecular shape analysis based upon the morse-smale complex and the connolly function". Proceedings of the nineteenth annual symposium on Computational geometry. ACM Press. pp. 351–360. doi:10.1145/777792.777845. ISBN   978-1-58113-663-0. S2CID   1570976.
  12. Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian (March 2015). "Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory". IEEE Transactions on Pattern Analysis and Machine Intelligence. 37 (3): 654–666. doi:10.1109/TPAMI.2014.2346172. hdl: 1885/12873 . ISSN   1939-3539. PMID   26353267. S2CID   7406197.
  13. Dey, Tamal K.; Wang, Jiayuan; Wang, Yusu (2018). Speckmann, Bettina; Tóth, Csaba D. (eds.). Graph Reconstruction by Discrete Morse Theory. 34th International Symposium on Computational Geometry (SoCG 2018). Leibniz International Proceedings in Informatics (LIPIcs). Vol. 99. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. pp. 31:1–31:15. doi:10.4230/LIPIcs.SoCG.2018.31. ISBN   978-3-95977-066-8. S2CID   3994099.
  14. Mukherjee, Soham (2021-09-01). "Denoising with discrete Morse theory". The Visual Computer. 37 (9): 2883–94. doi:10.1007/s00371-021-02255-7. S2CID   237426675.
  15. Bullenkamp, Jan Philipp; Linsel, Florian; Mara, Hubert (2022), "Lithic Feature Identification in 3D based on Discrete Morse Theory", Proceedings of Eurographics Workshop on Graphics and Cultural Heritage (GCH), Delft, Netherlands: Eurographics Association, pp. 55–58, doi:10.2312/VAST/VAST10/131-138, ISBN   9783038681786, ISSN   2312-6124 , retrieved 2022-10-05