CW complex

Last updated

In mathematics, and specifically in topology, a CW complex (also cellular complex or cell complex) is a topological space that is built by gluing together topological balls (so-called cells) of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. [1] It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. [2] CW complexes have better categorical properties than simplicial complexes, but still retain a combinatorial nature that allows for computation (often with a much smaller complex).

Contents

The C in CW stands for "closure-finite", and the W for "weak" topology. [2]

Definition

CW complex

A CW complex is constructed by taking the union of a sequence of topological spaces such that each is obtained from by gluing copies of k-cells , each homeomorphic to the open -ball , to by continuous gluing maps . The maps are also called attaching maps. Thus as a set, .

Each is called the k-skeleton of the complex.

The topology of is weak topology: a subset is open iff is open for each k-skeleton .

In the language of category theory, the topology on is the direct limit of the diagram The name "CW" stands for "closure-finite weak topology", which is explained by the following theorem:

Theorem  A Hausdorff space X is homeomorphic to a CW complex iff there exists a partition of X into "open cells" , each with a corresponding closure (or "closed cell") that satisfies:

  • For each , there exists a continuous surjection from the -dimensional closed ball such that
    • The restriction to the open ball is a homeomorphism.
    • (closure-finiteness) The image of the boundary is covered by a finite number of closed cells, each having cell dimension less than k.
  • (weak topology) A subset of X is closed if and only if it meets each closed cell in a closed set.

This partition of X is also called a cellulation.

The construction, in words

The CW complex construction is a straightforward generalization of the following process:

  • A 0-dimensional CW complex is just a set of zero or more discrete points (with the discrete topology).
  • A 1-dimensional CW complex is constructed by taking the disjoint union of a 0-dimensional CW complex with one or more copies of the unit interval. For each copy, there is a map that "glues" its boundary (its two endpoints) to elements of the 0-dimensional complex (the points). The topology of the CW complex is the topology of the quotient space defined by these gluing maps.
  • In general, an n-dimensional CW complex is constructed by taking the disjoint union of a k-dimensional CW complex (for some ) with one or more copies of the n-dimensional ball. For each copy, there is a map that "glues" its boundary (the -dimensional sphere) to elements of the -dimensional complex. The topology of the CW complex is the quotient topology defined by these gluing maps.
  • An infinite-dimensional CW complex can be constructed by repeating the above process countably many times. Since the topology of the union is indeterminate, one takes the direct limit topology, since the diagram is highly suggestive of a direct limit. This turns out to have great technical benefits.

Regular CW complexes

A regular CW complex is a CW complex whose gluing maps are homeomorphisms. Accordingly, the partition of X is also called a regular cellulation.

A loopless graph is represented by a regular 1-dimensional CW-complex. A closed 2-cell graph embedding on a surface is a regular 2-dimensional CW-complex. Finally, the 3-sphere regular cellulation conjecture claims that every 2-connected graph is the 1-skeleton of a regular CW-complex on the 3-dimensional sphere. [3]

Relative CW complexes

Roughly speaking, a relative CW complex differs from a CW complex in that we allow it to have one extra building block that does not necessarily possess a cellular structure. This extra-block can be treated as a (-1)-dimensional cell in the former definition. [4] [5] [6]

Examples

0-dimensional CW complexes

Every discrete topological space is a 0-dimensional CW complex.

1-dimensional CW complexes

Some examples of 1-dimensional CW complexes are: [7]

Finite-dimensional CW complexes

Some examples of finite-dimensional CW complexes are: [7]

Infinite-dimensional CW complexes

Non CW-complexes

Properties

Homology and cohomology of CW complexes

Singular homology and cohomology of CW complexes is readily computable via cellular homology. Moreover, in the category of CW complexes and cellular maps, cellular homology can be interpreted as a homology theory. To compute an extraordinary (co)homology theory for a CW complex, the Atiyah–Hirzebruch spectral sequence is the analogue of cellular homology.

Some examples:

since all the differentials are zero.
Alternatively, if we use the equatorial decomposition with two cells in every dimension
and the differentials are matrices of the form This gives the same homology computation above, as the chain complex is exact at all terms except and

Both of the above examples are particularly simple because the homology is determined by the number of cells—i.e.: the cellular attaching maps have no role in these computations. This is a very special phenomenon and is not indicative of the general case.

Modification of CW structures

There is a technique, developed by Whitehead, for replacing a CW complex with a homotopy-equivalent CW complex that has a simpler CW decomposition.

Consider, for example, an arbitrary CW complex. Its 1-skeleton can be fairly complicated, being an arbitrary graph. Now consider a maximal forest F in this graph. Since it is a collection of trees, and trees are contractible, consider the space where the equivalence relation is generated by if they are contained in a common tree in the maximal forest F. The quotient map is a homotopy equivalence. Moreover, naturally inherits a CW structure, with cells corresponding to the cells of that are not contained in F. In particular, the 1-skeleton of is a disjoint union of wedges of circles.

Another way of stating the above is that a connected CW complex can be replaced by a homotopy-equivalent CW complex whose 0-skeleton consists of a single point.

Consider climbing up the connectivity ladder—assume X is a simply-connected CW complex whose 0-skeleton consists of a point. Can we, through suitable modifications, replace X by a homotopy-equivalent CW complex where consists of a single point? The answer is yes. The first step is to observe that and the attaching maps to construct from form a group presentation. The Tietze theorem for group presentations states that there is a sequence of moves we can perform to reduce this group presentation to the trivial presentation of the trivial group. There are two Tietze moves:

1) Adding/removing a generator. Adding a generator, from the perspective of the CW decomposition consists of adding a 1-cell and a 2-cell whose attaching map consists of the new 1-cell and the remainder of the attaching map is in . If we let be the corresponding CW complex then there is a homotopy equivalence given by sliding the new 2-cell into X.
2) Adding/removing a relation. The act of adding a relation is similar, only one is replacing X by where the new 3-cell has an attaching map that consists of the new 2-cell and remainder mapping into . A similar slide gives a homotopy-equivalence .

If a CW complex X is n-connected one can find a homotopy-equivalent CW complex whose n-skeleton consists of a single point. The argument for is similar to the case, only one replaces Tietze moves for the fundamental group presentation by elementary matrix operations for the presentation matrices for (using the presentation matrices coming from cellular homology. i.e.: one can similarly realize elementary matrix operations by a sequence of addition/removal of cells or suitable homotopies of the attaching maps.

'The' homotopy category

The homotopy category of CW complexes is, in the opinion of some experts, the best if not the only candidate for the homotopy category (for technical reasons the version for pointed spaces is actually used). [16] Auxiliary constructions that yield spaces that are not CW complexes must be used on occasion. One basic result is that the representable functors on the homotopy category have a simple characterisation (the Brown representability theorem).

See also

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups. This operation, in turn, allows one to associate various named homologies or homology theories to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the homology of a topological space. There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space.

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by .

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n-dimensional oriented closed manifold (compact and without boundary), then the kth cohomology group of M is isomorphic to the (nk)th homology group of M, for all integers k

In mathematics, real projective space, denoted or is the topological space of lines passing through the origin 0 in the real space It is a compact, smooth manifold of dimension n, and is a special case of a Grassmannian space.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

In mathematics, cellular homology in algebraic topology is a homology theory for the category of CW-complexes. It agrees with singular homology, and can provide an effective means of computing homology modules.

In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres.

In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.

In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor. Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.

In geometric group theory, a presentation complex is a 2-dimensional cell complex associated to any presentation of a group G. The complex has a single vertex, and one loop at the vertex for each generator of G. There is one 2-cell for each relation in the presentation, with the boundary of the 2-cell attached along the appropriate word.

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan and Daniel Quillen. This simplification of homotopy theory makes certain calculations much easier.

In algebraic geometry, the Nisnevich topology, sometimes called the completely decomposed topology, is a Grothendieck topology on the category of schemes which has been used in algebraic K-theory, A¹ homotopy theory, and the theory of motives. It was originally introduced by Yevsey Nisnevich, who was motivated by the theory of adeles.

In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : XY is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : XY between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In topology, a branch of mathematics, a graph is a topological space which arises from a usual graph by replacing vertices by points and each edge by a copy of the unit interval , where is identified with the point associated to and with the point associated to . That is, as topological spaces, graphs are exactly the simplicial 1-complexes and also exactly the one-dimensional CW complexes.

References

Notes

  1. Hatcher, Allen (2002). Algebraic topology. Cambridge University Press. ISBN   0-521-79540-0. This textbook defines CW complexes in the first chapter and uses them throughout; includes an appendix on the topology of CW complexes. A free electronic version is available on the author's homepage.
  2. 1 2 Whitehead, J. H. C. (1949a). "Combinatorial homotopy. I." (PDF). Bulletin of the American Mathematical Society . 55 (5): 213–245. doi: 10.1090/S0002-9904-1949-09175-9 . MR   0030759. (open access)
  3. De Agostino, Sergio (2016). The 3-Sphere Regular Cellulation Conjecture (PDF). International Workshop on Combinatorial Algorithms.
  4. Davis, James F.; Kirk, Paul (2001). Lecture Notes in Algebraic Topology. Providence, R.I.: American Mathematical Society.
  5. "CW complex in nLab".
  6. "CW-complex - Encyclopedia of Mathematics".
  7. 1 2 Archived at Ghostarchive and the Wayback Machine : channel, Animated Math (2020). "1.3 Introduction to Algebraic Topology. Examples of CW Complexes". Youtube.
  8. Turaev, V. G. (1994). Quantum invariants of knots and 3-manifolds. De Gruyter Studies in Mathematics. Vol. 18. Berlin: Walter de Gruyter & Co. ISBN   9783110435221.
  9. Hatcher, Allen (2002). Algebraic topology. Cambridge University Press. p. 522. ISBN   0-521-79540-0. Proposition A.4
  10. Milnor, John (February 1959). "On Spaces Having the Homotopy Type of a CW-Complex" . Transactions of the American Mathematical Society. 90 (2): 272–280. doi:10.2307/1993204. ISSN   0002-9947. JSTOR   1993204.
  11. Hatcher, Allen, Algebraic topology, Cambridge University Press (2002). ISBN   0-521-79540-0. A free electronic version is available on the author's homepage
  12. Hatcher, Allen, Vector bundles and K-theory, preliminary version available on the author's homepage
  13. Hatcher, Allen (2002). Algebraic topology. Cambridge University Press. p. 529. ISBN   0-521-79540-0. Exercise 1
  14. Milnor, John (1959). "On spaces having the homotopy type of a CW-complex". Trans. Amer. Math. Soc. 90 (2): 272–280. doi: 10.1090/s0002-9947-1959-0100267-4 . JSTOR   1993204.
  15. "Compactly Generated Spaces" (PDF). Archived from the original (PDF) on 2016-03-03. Retrieved 2012-08-26.
  16. For example, the opinion "The class of CW complexes (or the class of spaces of the same homotopy type as a CW complex) is the most suitable class of topological spaces in relation to homotopy theory" appears in Baladze, D.O. (2001) [1994], "CW-complex", Encyclopedia of Mathematics , EMS Press

General references