Compact-open topology

Last updated

In mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945. [1]

Contents

If the codomain of the functions under consideration has a uniform structure or a metric structure then the compact-open topology is the "topology of uniform convergence on compact sets." That is to say, a sequence of functions converges in the compact-open topology precisely when it converges uniformly on every compact subset of the domain. [2]

Definition

Let X and Y be two topological spaces, and let C(X, Y) denote the set of all continuous maps between X and Y. Given a compact subset K of X and an open subset U of Y, let V(K, U) denote the set of all functions fC(X, Y) such that f(K) ⊆ U. In other words, . Then the collection of all such V(K, U) is a subbase for the compact-open topology on C(X, Y). (This collection does not always form a base for a topology on C(X, Y).)

When working in the category of compactly generated spaces, it is common to modify this definition by restricting to the subbase formed from those K that are the image of a compact Hausdorff space. Of course, if X is compactly generated and Hausdorff, this definition coincides with the previous one. However, the modified definition is crucial if one wants the convenient category of compactly generated weak Hausdorff spaces to be Cartesian closed, among other useful properties. [3] [4] [5] The confusion between this definition and the one above is caused by differing usage of the word compact.

If X is locally compact, then from the category of topological spaces always has a right adjoint . This adjoint coincides with the compact-open topology and may be used to uniquely define it. The modification of the definition for compactly generated spaces may be viewed as taking the adjoint of the product in the category of compactly generated spaces instead of the category of topological spaces, which ensures that the right adjoint always exists.

Properties

Applications

The compact open topology can be used to topologize the following sets: [7]

In addition, there is a homotopy equivalence between the spaces . [7] These topological spaces, are useful in homotopy theory because it can be used to form a topological space and a model for the homotopy type of the set of homotopy classes of maps

This is because is the set of path components in , that is, there is an isomorphism of sets

where is the homotopy equivalence.

Fréchet differentiable functions

Let X and Y be two Banach spaces defined over the same field, and let Cm(U, Y) denote the set of all m-continuously Fréchet-differentiable functions from the open subset UX to Y. The compact-open topology is the initial topology induced by the seminorms

where D0f(x) = f(x), for each compact subset KU.[ clarification needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

In topology and related branches of mathematics, a Hausdorff space ( HOWSS-dorf, HOWZ-dorf), separated space or T2 space is a topological space where, for any two distinct points, there exist neighbourhoods of each which are disjoint from each other. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters.

In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product.

In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

In the mathematical field of topology, a uniform space is a topological space with additional structure that is used to define uniform properties, such as completeness, uniform continuity and uniform convergence. Uniform spaces generalize metric spaces and topological groups, but the concept is designed to formulate the weakest axioms needed for most proofs in analysis.

<span class="mw-page-title-main">Topological group</span> Group that is a topological space with continuous group action

In mathematics, topological groups are the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two structures together and consequently they are not independent from each other.

In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood.

<span class="mw-page-title-main">General topology</span> Branch of topology

In mathematics, general topology is the branch of topology that deals with the basic set-theoretic definitions and constructions used in topology. It is the foundation of most other branches of topology, including differential topology, geometric topology, and algebraic topology.

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

In mathematics, the Gelfand representation in functional analysis is either of two things:

In topology, a subbase for a topological space with topology is a subcollection of that generates in the sense that is the smallest topology containing as open sets. A slightly different definition is used by some authors, and there are other useful equivalent formulations of the definition; these are discussed below.

In mathematical analysis, a family of functions is equicontinuous if all the functions are continuous and they have equal variation over a given neighbourhood, in a precise sense described herein. In particular, the concept applies to countable families, and thus sequences of functions.

In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom in the definition of one or both terms, and others don't.

In topology and related areas of mathematics, a topological property or topological invariant is a property of a topological space that is invariant under homeomorphisms. Alternatively, a topological property is a proper class of topological spaces which is closed under homeomorphisms. That is, a property of spaces is a topological property if whenever a space X possesses that property every space homeomorphic to X possesses that property. Informally, a topological property is a property of the space that can be expressed using open sets.

In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed “size”.

In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

References

  1. Fox, Ralph H. (1945). "On topologies for function spaces". Bulletin of the American Mathematical Society. 51 (6): 429–433. doi: 10.1090/S0002-9904-1945-08370-0 .
  2. Kelley, John L. (1975). General topology. Springer-Verlag. p. 230.
  3. McCord, M. C. (1969). "Classifying Spaces and Infinite Symmetric Products". Transactions of the American Mathematical Society. 146: 273–298. doi: 10.1090/S0002-9947-1969-0251719-4 . JSTOR   1995173.
  4. "A Concise Course in Algebraic Topology" (PDF).
  5. "Compactly Generated Spaces" (PDF). Archived from the original (PDF) on 2016-03-03. Retrieved 2012-01-14.
  6. Jackson, James R. (1952). "Spaces of Mappings on Topological Products with Applications to Homotopy Theory" (PDF). Proceedings of the American Mathematical Society. 3 (2): 327–333. doi: 10.1090/S0002-9939-1952-0047322-4 . JSTOR   2032279.
  7. 1 2 Fomenko, Anatoly; Fuchs, Dmitry. Homotopical Topology (2nd ed.). pp. 20–23.