Weak Hausdorff space

Last updated
Separation axioms
in topological spaces
Kolmogorov classification
T0  (Kolmogorov)
T1  (Fréchet)
T2  (Hausdorff)
T2½ (Urysohn)
completely T2  (completely Hausdorff)
T3  (regular Hausdorff)
T3½ (Tychonoff)
T4  (normal Hausdorff)
T5  (completely normal
 Hausdorff)
T6  (perfectly normal
 Hausdorff)

In mathematics, a weak Hausdorff space or weakly Hausdorff space is a topological space where the image of every continuous map from a compact Hausdorff space into the space is closed. [1] The notion was introduced by M. C. McCord [2] to remedy an inconvenience of working with the category of Hausdorff spaces. It is often used in tandem with compactly generated spaces in algebraic topology. For that, see the category of compactly generated weak Hausdorff spaces.

Contents

Their strictness as separation properties in increasing order is T1 (points are closed), Δ-Hausdorff, weak Hausdorff, KC space, k-Hausdorff, and Hausdorff (T2) ; [3] [4] see the following for explanations.

k-Hausdorff spaces

A k-Hausdorff space [5] is a topological space which satisfies any of the following equivalent conditions:

  1. Each compact subspace is Hausdorff.
  2. The diagonal is k-closed in
    • A subset is k-closed, if is closed in for each compact
  3. Each compact subspace is closed and strongly locally compact.
    • A space is strongly locally compact if for each and each (not necessarily open) neighborhood of there exists a compact neighborhood of such that

Properties

Δ-Hausdorff spaces

A Δ-Hausdorff space is a topological space where the image of every path is closed; that is, if whenever is continuous then is closed in Every weak Hausdorff space is -Hausdorff, and every -Hausdorff space is a T1 space. A space is Δ-generated if its topology is the finest topology such that each map from a topological -simplex to is continuous. -Hausdorff spaces are to -generated spaces as weak Hausdorff spaces are to compactly generated spaces.

See also

References

  1. Hoffmann, Rudolf-E. (1979), "On weak Hausdorff spaces", Archiv der Mathematik, 32 (5): 487–504, doi:10.1007/BF01238530, MR   0547371 .
  2. McCord, M. C. (1969), "Classifying spaces and infinite symmetric products", Transactions of the American Mathematical Society, 146: 273–298, doi: 10.2307/1995173 , JSTOR   1995173, MR   0251719 .
  3. J.P. May, A Concise Course in Algebraic Topology . (1999) University of Chicago Press ISBN   0-226-51183-9 (See chapter 5)
  4. Strickland, Neil P. (2009). "The category of CGWH spaces" (PDF).
  5. Lawson, J; Madison, B (1974). "Quotients of k-semigroups". Semigroup Forum. 9: 1–18. doi:10.1007/BF02194829.