Invariance of domain

Last updated

Invariance of domain is a theorem in topology about homeomorphic subsets of Euclidean space . It states:

Contents

If is an open subset of and is an injective continuous map, then is open in and is a homeomorphism between and .

The theorem and its proof are due to L. E. J. Brouwer, published in 1912. [1] The proof uses tools of algebraic topology, notably the Brouwer fixed point theorem.

Notes

The conclusion of the theorem can equivalently be formulated as: " is an open map".

Normally, to check that is a homeomorphism, one would have to verify that both and its inverse function are continuous; the theorem says that if the domain is an open subset of and the image is also in then continuity of is automatic. Furthermore, the theorem says that if two subsets and of are homeomorphic, and is open, then must be open as well. (Note that is open as a subset of and not just in the subspace topology. Openness of in the subspace topology is automatic.) Both of these statements are not at all obvious and are not generally true if one leaves Euclidean space.

A map which is not a homeomorphism onto its image:
g
:
(
-
1.1
,
1
)
-
R
2
{\displaystyle g:(-1.1,1)\to \mathbb {R} ^{2}}
with
g
(
t
)
=
(
t
2
-
1
,
t
3
-
t
)
.
{\displaystyle g(t)=\left(t^{2}-1,t^{3}-t\right).} A map which is not a homeomorphism onto its image.png
A map which is not a homeomorphism onto its image: with

It is of crucial importance that both domain and image of are contained in Euclidean space of the same dimension. Consider for instance the map defined by This map is injective and continuous, the domain is an open subset of , but the image is not open in A more extreme example is the map defined by because here is injective and continuous but does not even yield a homeomorphism onto its image.

The theorem is also not generally true in infinitely many dimensions. Consider for instance the Banach lp space of all bounded real sequences. Define as the shift Then is injective and continuous, the domain is open in , but the image is not.

Consequences

An important consequence of the domain invariance theorem is that cannot be homeomorphic to if Indeed, no non-empty open subset of can be homeomorphic to any open subset of in this case.

Generalizations

The domain invariance theorem may be generalized to manifolds: if and are topological n-manifolds without boundary and is a continuous map which is locally one-to-one (meaning that every point in has a neighborhood such that restricted to this neighborhood is injective), then is an open map (meaning that is open in whenever is an open subset of ) and a local homeomorphism.

There are also generalizations to certain types of continuous maps from a Banach space to itself. [2]

See also

Notes

  1. Brouwer L.E.J. Beweis der Invarianz des -dimensionalen Gebiets, Mathematische Annalen 71 (1912), pages 305–315; see also 72 (1912), pages 55–56
  2. Leray J. Topologie des espaces abstraits de M. Banach. C. R. Acad. Sci. Paris, 200 (1935) pages 1083–1093

Related Research Articles

In mathematics, more specifically in functional analysis, a Banach space is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function mapping a compact convex set to itself there is a point such that . The simplest forms of Brouwer's theorem are for continuous functions from a closed interval in the real numbers to itself or from a closed disk to itself. A more general form than the latter is for continuous functions from a convex compact subset of Euclidean space to itself.

<span class="mw-page-title-main">Compact space</span> Type of mathematical space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact. Similarly, the space of rational numbers is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers is not compact either, because it excludes the two limiting values and . However, the extended real number linewould be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topological spaces.

<span class="mw-page-title-main">Diffeomorphism</span> Isomorphism of smooth manifolds; a smooth bijection with a smooth inverse

In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable.

In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

In the mathematical discipline of general topology, Stone–Čech compactification is a technique for constructing a universal map from a topological space X to a compact Hausdorff space βX. The Stone–Čech compactification βX of a topological space X is the largest, most general compact Hausdorff space "generated" by X, in the sense that any continuous map from X to a compact Hausdorff space factors through βX. If X is a Tychonoff space then the map from X to its image in βX is a homeomorphism, so X can be thought of as a (dense) subspace of βX; every other compact Hausdorff space that densely contains X is a quotient of βX. For general topological spaces X, the map from X to βX need not be injective.

In the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞. The map c is a Hausdorff compactification if and only if X is a locally compact, noncompact Hausdorff space. For such spaces the Alexandroff extension is called the one-point compactification or Alexandroff compactification. The advantages of the Alexandroff compactification lie in its simple, often geometrically meaningful structure and the fact that it is in a precise sense minimal among all compactifications; the disadvantage lies in the fact that it only gives a Hausdorff compactification on the class of locally compact, noncompact Hausdorff spaces, unlike the Stone–Čech compactification which exists for any topological space.

In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the finest topology that can be given on a set. Every subset is open in the discrete topology so that in particular, every singleton subset is an open set in the discrete topology.

In mathematics, a diffeology on a set generalizes the concept of smooth charts in a differentiable manifold, declaring what the "smooth parametrizations" in the set are.

In mathematics, more specifically topology, a local homeomorphism is a function between topological spaces that, intuitively, preserves local structure. If is a local homeomorphism, is said to be an étale space over Local homeomorphisms are used in the study of sheaves. Typical examples of local homeomorphisms are covering maps.

In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets. That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets. A map may be open, closed, both, or neither; in particular, an open map need not be closed and vice versa.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, triangulation describes the replacement of topological spaces by piecewise linear spaces, i.e. the choice of a homeomorphism in a suitable simplicial complex. Spaces being homeomorphic to a simplicial complex are called triangulable. Triangulation has various uses in different branches of mathematics, for instance in algebraic topology, in complex analysis or in modeling.

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between Smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold. Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure.

In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformation retraction is a mapping that captures the idea of continuously shrinking a space into a subspace.

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, Erdős space is a topological space named after Paul Erdős, who described it in 1940. Erdős space is defined as a subspace of the Hilbert space of square summable sequences, consisting of the sequences whose elements are all rational numbers.

In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states that any two infinite-dimensional, separable Banach spaces, or, more generally, Fréchet spaces, are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadets (1966) and Richard Davis Anderson.

In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.

References